Multi-Agent Neural Rewriter for Vehicle Routing with Limited Disclosure
of Costs
- URL: http://arxiv.org/abs/2206.05990v1
- Date: Mon, 13 Jun 2022 09:17:40 GMT
- Title: Multi-Agent Neural Rewriter for Vehicle Routing with Limited Disclosure
of Costs
- Authors: Nathalie Paul, Tim Wirtz, Stefan Wrobel, Alexander Kister
- Abstract summary: Solving the multi-vehicle routing problem as a team Markov game with partially observable costs.
Our multi-agent reinforcement learning approach, the so-called multi-agent Neural Rewriter, builds on the single-agent Neural Rewriter to solve the problem by iteratively rewriting solutions.
- Score: 65.23158435596518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We interpret solving the multi-vehicle routing problem as a team Markov game
with partially observable costs. For a given set of customers to serve, the
playing agents (vehicles) have the common goal to determine the team-optimal
agent routes with minimal total cost. Each agent thereby observes only its own
cost. Our multi-agent reinforcement learning approach, the so-called
multi-agent Neural Rewriter, builds on the single-agent Neural Rewriter to
solve the problem by iteratively rewriting solutions. Parallel agent action
execution and partial observability require new rewriting rules for the game.
We propose the introduction of a so-called pool in the system which serves as a
collection point for unvisited nodes. It enables agents to act simultaneously
and exchange nodes in a conflict-free manner. We realize limited disclosure of
agent-specific costs by only sharing them during learning. During inference,
each agents acts decentrally, solely based on its own cost. First empirical
results on small problem sizes demonstrate that we reach a performance close to
the employed OR-Tools benchmark which operates in the perfect cost information
setting.
Related papers
- Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
Bottom Up Network (BUN) treats the collective of multi-agents as a unified entity.
Our empirical evaluations across a variety of cooperative multi-agent scenarios, including tasks such as cooperative navigation and traffic control, consistently demonstrate BUN's superiority over baseline methods with substantially reduced computational costs.
arXiv Detail & Related papers (2024-10-03T14:25:02Z) - Fair collaborative vehicle routing: A deep multi-agent reinforcement
learning approach [49.00137468773683]
Collaborative vehicle routing occurs when carriers collaborate through sharing their transportation requests and performing transportation requests on behalf of each other.
Traditional game theoretic solution concepts are expensive to calculate as the characteristic function scales exponentially with the number of agents.
We propose to model this problem as a coalitional bargaining game solved using deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2023-10-26T15:42:29Z) - Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
Collaborative Vehicle Routing is where delivery companies cooperate by sharing their delivery information and performing delivery requests on behalf of each other.
This achieves economies of scale and thus reduces cost, greenhouse gas emissions, and road congestion.
But which company should partner with whom, and how much should each company be compensated?
Traditional game theoretic solution concepts, such as the Shapley value or nucleolus, are difficult to calculate for the real-world problem of Collaborative Vehicle Routing.
arXiv Detail & Related papers (2023-10-26T15:04:23Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Distributed Online Rollout for Multivehicle Routing in Unmapped
Environments [0.8437187555622164]
We present a fully distributed, online, and scalable reinforcement learning algorithm for the well-known multivehicle routing problem.
Agents self-organize into local clusters and independently apply a multiagent rollout scheme locally to each cluster.
Our algorithm achieves approximately a factor of two cost improvement over the base policy for a range of radii bounded from below and above by two and three times the critical sensing radius, respectively.
arXiv Detail & Related papers (2023-05-24T22:06:44Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Learning to Incentivize Information Acquisition: Proper Scoring Rules
Meet Principal-Agent Model [64.94131130042275]
We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf.
We design a provably sample efficient algorithm that tailors the UCB algorithm to our model.
Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized.
arXiv Detail & Related papers (2023-03-15T13:40:16Z) - Multi-Agent congestion cost minimization with linear function
approximation [0.0]
This work considers multiple agents traversing a network from a source node to the goal node.
Agents' objective is to find a path to the goal node with minimum overall cost in a decentralized way.
We propose a novel multi-agent congestion cost minimization algorithm.
arXiv Detail & Related papers (2023-01-26T08:45:44Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
In multi-agent system, polices of different agents need to be evaluated jointly.
In current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously.
In this work, we propose the approximatively synchronous advantage estimation.
arXiv Detail & Related papers (2020-12-07T07:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.