論文の概要: GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access
- arxiv url: http://arxiv.org/abs/2206.05998v1
- Date: Mon, 13 Jun 2022 09:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 17:55:04.364476
- Title: GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access
- Title(参考訳): 非orthogonal multi accessにおけるgpuアクセラレーション機械学習
- Authors: Daniel Sch\"aufele, Guillermo Marcus, Nikolaus Binder, Matthias
Mehlhose, Alexander Keller, S{\l}awomir Sta\'nczak
- Abstract要約: 非直交多重アクセス(Noma)は、将来の5Gおよび6Gネットワークに必要な大規模な接続を可能にする興味深い技術である。
線形処理と非線形処理の両方の利点を組み合わせたニューラルネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 71.58925117604039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-orthogonal multiple access (NOMA) is an interesting technology that
enables massive connectivity as required in future 5G and 6G networks. While
purely linear processing already achieves good performance in NOMA systems, in
certain scenarios, non-linear processing is mandatory to ensure acceptable
performance. In this paper, we propose a neural network architecture that
combines the advantages of both linear and non-linear processing. Its real-time
detection performance is demonstrated by a highly efficient implementation on a
graphics processing unit (GPU). Using real measurements in a laboratory
environment, we show the superiority of our approach over conventional methods.
- Abstract(参考訳): 非直交多重アクセス(Noma)は、将来の5Gおよび6Gネットワークに必要な大規模な接続を可能にする興味深い技術である。
純粋に線形処理は、すでにNOMAシステムでは優れた性能を達成しているが、あるシナリオでは、許容可能な性能を保証するためには非線形処理が必須である。
本稿では,線形処理と非線形処理の両方の利点を組み合わせたニューラルネットワークアーキテクチャを提案する。
リアルタイム検出性能はグラフィックス処理ユニット(GPU)の高効率実装によって実証される。
実験環境における実測値を用いて,従来の手法よりも優れた手法を示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Benchmarking Edge AI Platforms for High-Performance ML Inference [0.0]
エッジコンピューティングは、通信遅延を減らし、リアルタイム処理を可能にする能力から、高性能で異質なSystem-on-Chipソリューションの興隆を促進している。
現在のアプローチでは、現代的なハードウェアをスケールダウンすることが多いが、ニューラルネットワークワークロードのパフォーマンス特性は、大きく異なる場合がある。
我々は、CPUのみ、CPU/GPU、CPU/NPU統合ソリューション間で、様々な線形代数およびニューラルネットワーク推論タスクのレイテンシとスループットを比較した。
論文 参考訳(メタデータ) (2024-09-23T08:27:27Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Real-time Hyper-Dimensional Reconfiguration at the Edge using Hardware
Accelerators [12.599871451119538]
HyDRATEは、ディープニューラルネット(DNN)と超次元(HD)コンピューティングアクセラレータを組み合わせることで、エッジでリアルタイムな再構成を行うことができる。
本稿では,アルゴリズム,訓練された量子化モデル生成,および乗算累積のない特徴抽出器の性能について述べる。
降下勾配のバックプロパゲーションを伴わないフィードフォワードHD分類器のみをリトレーニングすることで、フィールドにおける再構成性を実現する。
論文 参考訳(メタデータ) (2022-06-10T14:08:41Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Knowledge Distillation Circumvents Nonlinearity for Optical
Convolutional Neural Networks [4.683612295430957]
本稿では、スペクトルCNN線形カウンタ部(SCLC)ネットワークアーキテクチャを提案し、非線形性の必要性を回避するための知識蒸留(KD)アプローチを開発する。
KDアプローチは、CNNの標準線形バージョンを簡単に上回るパフォーマンスを達成し、非線形ネットワークのパフォーマンスに近づくことができることを示しています。
論文 参考訳(メタデータ) (2021-02-26T06:35:34Z) - Efficient Algorithms for Device Placement of DNN Graph Operators [12.871398348743591]
現代の機械学習ワークロードは、実行に非常にコストがかかる複雑な構造を持つ大規模なモデルを使用する。
複雑なモデルを実行するデバイスは、CPUに加えて、ハードウェアアクセラレータとして提供されるドメイン固有のアクセラレータが盛んになるにつれて、ますます異質になりつつある。
近年の研究では、モデルの並列性、すなわちニューラルネットワークの計算グラフを複数のデバイスに分割することで、大きな利益が得られることが示されている。
本稿では,DNN演算子のデバイス配置のコアとなる構造的最適化問題を,特に現代のパイプライン環境において,推論とトレーニングの両方のために同定し,分離する。
論文 参考訳(メタデータ) (2020-06-29T22:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。