Machine Learning Training on a Real Processing-in-Memory System
- URL: http://arxiv.org/abs/2206.06022v1
- Date: Mon, 13 Jun 2022 10:20:23 GMT
- Title: Machine Learning Training on a Real Processing-in-Memory System
- Authors: Juan G\'omez-Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, Onur Mutlu
- Abstract summary: Training machine learning algorithms is a computationally intensive process, which is frequently memory-bound.
Memory-centric computing systems with processing-in-memory capabilities can alleviate this data movement bottleneck.
Our work is the first one to evaluate training of machine learning algorithms on a real-world general-purpose PIM architecture.
- Score: 9.286176889576996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training machine learning algorithms is a computationally intensive process,
which is frequently memory-bound due to repeatedly accessing large training
datasets. As a result, processor-centric systems (e.g., CPU, GPU) suffer from
costly data movement between memory units and processing units, which consumes
large amounts of energy and execution cycles. Memory-centric computing systems,
i.e., computing systems with processing-in-memory (PIM) capabilities, can
alleviate this data movement bottleneck.
Our goal is to understand the potential of modern general-purpose PIM
architectures to accelerate machine learning training. To do so, we (1)
implement several representative classic machine learning algorithms (namely,
linear regression, logistic regression, decision tree, K-means clustering) on a
real-world general-purpose PIM architecture, (2) characterize them in terms of
accuracy, performance and scaling, and (3) compare to their counterpart
implementations on CPU and GPU. Our experimental evaluation on a memory-centric
computing system with more than 2500 PIM cores shows that general-purpose PIM
architectures can greatly accelerate memory-bound machine learning workloads,
when the necessary operations and datatypes are natively supported by PIM
hardware.
To our knowledge, our work is the first one to evaluate training of machine
learning algorithms on a real-world general-purpose PIM architecture.
Related papers
- Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
Large language models (LLMs) have transformed natural language processing, enabling machines to generate human-like text and engage in meaningful conversations.
Developments in computing and memory capabilities are lagging behind, exacerbated by the discontinuation of Moore's law.
compute-in-memory (CIM) technologies offer a promising solution for accelerating AI inference by directly performing analog computations in memory.
arXiv Detail & Related papers (2024-06-12T16:57:58Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - PIM-Opt: Demystifying Distributed Optimization Algorithms on a Real-World Processing-In-Memory System [21.09681871279162]
Modern Machine Learning (ML) training on large-scale datasets is a time-consuming workload.
It relies on the optimization algorithm Gradient Descent (SGD) due to its effectiveness, simplicity, and generalization performance.
processor-centric architectures suffer from low performance and high energy consumption while executing ML training workloads.
Processing-In-Memory (PIM) is a promising solution to alleviate the data movement bottleneck.
arXiv Detail & Related papers (2024-04-10T17:00:04Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Performance and Energy Consumption of Parallel Machine Learning
Algorithms [0.0]
Machine learning models have achieved remarkable success in various real-world applications.
Model training in machine learning requires large-scale data sets and multiple iterations before it can work properly.
Parallelization of training algorithms is a common strategy to speed up the process of training.
arXiv Detail & Related papers (2023-05-01T13:04:39Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - An Experimental Evaluation of Machine Learning Training on a Real
Processing-in-Memory System [9.429605859159023]
Training machine learning (ML) algorithms is a computationally intensive process, which is frequently memory-bound.
Memory-centric computing systems, with processing-in-memory capabilities, can alleviate this data movement bottleneck.
We implement several representative classic ML algorithms on a real-world general-purpose PIM architecture.
arXiv Detail & Related papers (2022-07-16T09:39:53Z) - Heterogeneous Data-Centric Architectures for Modern Data-Intensive
Applications: Case Studies in Machine Learning and Databases [9.927754948343326]
processing-in-memory (PIM) is a promising execution paradigm that alleviates the data movement bottleneck in modern applications.
In this paper, we show how to take advantage of the PIM paradigm for two modern data-intensive applications.
arXiv Detail & Related papers (2022-05-29T13:43:17Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.