Towards Autonomous Grading In The Real World
- URL: http://arxiv.org/abs/2206.06091v1
- Date: Mon, 13 Jun 2022 12:21:20 GMT
- Title: Towards Autonomous Grading In The Real World
- Authors: Yakov Miron, Chana Ross, Yuval Goldfracht, Chen Tessler and Dotan Di
Castro
- Abstract summary: We aim to tackle the problem of autonomous grading, where a dozer is required to flatten an uneven area.
We design both a realistic physical simulation and a scaled real prototype environment mimicking the real dozer dynamics and sensory information.
- Score: 4.651327752886103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we aim to tackle the problem of autonomous grading, where a
dozer is required to flatten an uneven area. In addition, we explore methods
for bridging the gap between a simulated environment and real scenarios. We
design both a realistic physical simulation and a scaled real prototype
environment mimicking the real dozer dynamics and sensory information. We
establish heuristics and learning strategies in order to solve the problem.
Through extensive experimentation, we show that although heuristics are capable
of tackling the problem in a clean and noise-free simulated environment, they
fail catastrophically when facing real world scenarios. As the heuristics are
capable of successfully solving the task in the simulated environment, we show
they can be leveraged to guide a learning agent which can generalize and solve
the task both in simulation and in a scaled prototype environment.
Related papers
- Sim-to-Real Transfer of Deep Reinforcement Learning Agents for Online Coverage Path Planning [15.792914346054502]
We tackle the challenge of sim-to-real transfer of reinforcement learning (RL) agents for coverage path planning ( CPP)
We bridge the sim-to-real gap through a semi-virtual environment, including a real robot and real-time aspects, while utilizing a simulated sensor and obstacles.
We find that a high inference frequency allows first-order Markovian policies to transfer directly from simulation, while higher-order policies can be fine-tuned to further reduce the sim-to-real gap.
arXiv Detail & Related papers (2024-06-07T13:24:19Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - Reconciling Reality through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation [22.16213887836936]
Imitation learning methods need human supervision to learn policies robust to changes in object poses, physical disturbances, and visual distractors.
Reinforcement learning, on the other hand, can explore the environment autonomously to learn robust behaviors but may require impractical amounts of real-world data collection.
We propose RialTo, a system for robustifying real-world imitation learning policies via reinforcement learning in "digital twin" simulation environments constructed on the fly.
arXiv Detail & Related papers (2024-03-06T18:55:36Z) - Zero-shot Sim2Real Adaptation Across Environments [45.44896435487879]
We propose a Reverse Action Transformation (RAT) policy which learns to imitate simulated policies in the real-world.
RAT can then be deployed on top of a Universal Policy Network to achieve zero-shot adaptation to new environments.
arXiv Detail & Related papers (2023-02-08T11:59:07Z) - An in-depth experimental study of sensor usage and visual reasoning of
robots navigating in real environments [20.105395754497202]
We study the performance and reasoning capacities of real physical agents, trained in simulation and deployed to two different physical environments.
We show, that for the PointGoal task, an agent pre-trained on wide variety of tasks and fine-tuned on a simulated version of the target environment can reach competitive performance without modelling any sim2real transfer.
arXiv Detail & Related papers (2021-11-29T16:27:29Z) - OPEn: An Open-ended Physics Environment for Learning Without a Task [132.6062618135179]
We will study if models of the world learned in an open-ended physics environment, without any specific tasks, can be reused for downstream physics reasoning tasks.
We build a benchmark Open-ended Physics ENvironment (OPEn) and also design several tasks to test learning representations in this environment explicitly.
We find that an agent using unsupervised contrastive learning for representation learning, and impact-driven learning for exploration, achieved the best results.
arXiv Detail & Related papers (2021-10-13T17:48:23Z) - BEHAVIOR: Benchmark for Everyday Household Activities in Virtual,
Interactive, and Ecological Environments [70.18430114842094]
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation.
These activities are designed to be realistic, diverse, and complex.
We include 500 human demonstrations in virtual reality (VR) to serve as the human ground truth.
arXiv Detail & Related papers (2021-08-06T23:36:23Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
We present a framework for self-learning a high-performance exploration policy in a single simulation environment.
We propose a novel approach that uses graph neural networks in conjunction with deep reinforcement learning.
arXiv Detail & Related papers (2021-05-11T02:42:17Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.