Evaluating Real-World Robot Manipulation Policies in Simulation
- URL: http://arxiv.org/abs/2405.05941v1
- Date: Thu, 9 May 2024 17:30:16 GMT
- Title: Evaluating Real-World Robot Manipulation Policies in Simulation
- Authors: Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan Vuong, Ted Xiao,
- Abstract summary: Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
- Score: 91.55267186958892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of robotics has made significant advances towards generalist robot manipulation policies. However, real-world evaluation of such policies is not scalable and faces reproducibility challenges, which are likely to worsen as policies broaden the spectrum of tasks they can perform. We identify control and visual disparities between real and simulated environments as key challenges for reliable simulated evaluation and propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments. We then employ these approaches to create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups. Through paired sim-and-real evaluations of manipulation policies, we demonstrate strong correlation between policy performance in SIMPLER environments and in the real world. Additionally, we find that SIMPLER evaluations accurately reflect real-world policy behavior modes such as sensitivity to various distribution shifts. We open-source all SIMPLER environments along with our workflow for creating new environments at https://simpler-env.github.io to facilitate research on general-purpose manipulation policies and simulated evaluation frameworks.
Related papers
- How Generalizable Is My Behavior Cloning Policy? A Statistical Approach to Trustworthy Performance Evaluation [17.638831964639834]
Behavior cloning policies are increasingly successful at solving complex tasks by learning from human demonstrations.
We present a framework that provides a tight lower-bound on robot performance in an arbitrary environment.
In experiments we evaluate policies for visuomotor manipulation in both simulation and hardware.
arXiv Detail & Related papers (2024-05-08T22:00:35Z) - Marginalized Importance Sampling for Off-Environment Policy Evaluation [13.824507564510503]
Reinforcement Learning (RL) methods are typically sample-inefficient, making it challenging to train and deploy RL-policies in real world robots.
This paper proposes a new approach to evaluate the real-world performance of agent policies prior to deploying them in the real world.
Our approach incorporates a simulator along with real-world offline data to evaluate the performance of any policy.
arXiv Detail & Related papers (2023-09-04T20:52:04Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Uncertainty Aware System Identification with Universal Policies [45.44896435487879]
Sim2real transfer is concerned with transferring policies trained in simulation to potentially noisy real world environments.
We propose Uncertainty-aware policy search (UncAPS), where we use Universal Policy Network (UPN) to store simulation-trained task-specific policies.
We then employ robust Bayesian optimisation to craft robust policies for the given environment by combining relevant UPN policies in a DR like fashion.
arXiv Detail & Related papers (2022-02-11T18:27:23Z) - Off Environment Evaluation Using Convex Risk Minimization [0.0]
We propose a convex risk minimization algorithm to estimate the model mismatch between the simulator and the target domain.
We show that this estimator can be used along with the simulator to evaluate performance of an RL agents in the target domain.
arXiv Detail & Related papers (2021-12-21T21:31:54Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.