論文の概要: Transformer Lesion Tracker
- arxiv url: http://arxiv.org/abs/2206.06252v1
- Date: Mon, 13 Jun 2022 15:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 15:48:05.125396
- Title: Transformer Lesion Tracker
- Title(参考訳): 変圧器病変追跡装置
- Authors: Wen Tang, Han Kang, Haoyue Zhang, Pengxin Yu, Corey W. Arnold, Rongguo
Zhang
- Abstract要約: 我々はTransformer Lesion Tracker(TLT)と呼ばれるトランスフォーマーベースのアプローチを提案する。
我々はCAT(Cross Attention-based Transformer)を設計し、グローバル情報とローカル情報の両方を取り込み、特徴抽出を強化する。
我々は,提案手法の優位性を示すために,公開データセット上で実験を行い,モデルの性能が平均ユークリッド中心誤差を少なくとも14.3%改善したことを確認した。
- 参考スコア(独自算出の注目度): 12.066026343488453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating lesion progression and treatment response via longitudinal lesion
tracking plays a critical role in clinical practice. Automated approaches for
this task are motivated by prohibitive labor costs and time consumption when
lesion matching is done manually. Previous methods typically lack the
integration of local and global information. In this work, we propose a
transformer-based approach, termed Transformer Lesion Tracker (TLT).
Specifically, we design a Cross Attention-based Transformer (CAT) to capture
and combine both global and local information to enhance feature extraction. We
also develop a Registration-based Anatomical Attention Module (RAAM) to
introduce anatomical information to CAT so that it can focus on useful feature
knowledge. A Sparse Selection Strategy (SSS) is presented for selecting
features and reducing memory footprint in Transformer training. In addition, we
use a global regression to further improve model performance. We conduct
experiments on a public dataset to show the superiority of our method and find
that our model performance has improved the average Euclidean center error by
at least 14.3% (6mm vs. 7mm) compared with the state-of-the-art (SOTA). Code is
available at https://github.com/TangWen920812/TLT.
- Abstract(参考訳): 長期病変追跡による病変進展と治療反応の評価は臨床実践において重要な役割を担っている。
このタスクの自動化されたアプローチは、手動で病変マッチングを行う場合の労働コストと時間消費によって動機付けられる。
従来の手法は、通常、ローカルとグローバルの情報の統合を欠いている。
本研究では,Transformer Lesion Tracker (TLT) と呼ばれるトランスフォーマーベースの手法を提案する。
具体的には,CAT(Cross Attention-based Transformer)を設計し,グローバル情報とローカル情報を組み合わせて特徴抽出を強化する。
我々はまた,CATに解剖情報を導入し,有用な特徴知識に集中できるように,登録ベースの解剖アテンションモジュール(RAAM)を開発した。
トランスフォーマートレーニングでは、機能の選択とメモリフットプリントの削減のためにスパース選択戦略(SSS)が提示される。
さらに、グローバル回帰を使用して、モデルパフォーマンスをさらに向上します。
我々は,我々の手法の優位性を示すために,公開データセット上で実験を行い,我々のモデルの性能が最先端(SOTA)と比較して,平均ユークリッド中心誤差を14.3%(6mm vs. 7mm)以上改善したことを確認した。
コードはhttps://github.com/TangWen920812/TLTで入手できる。
関連論文リスト
- SegStitch: Multidimensional Transformer for Robust and Efficient Medical Imaging Segmentation [15.811141677039224]
最先端の手法、特にトランスフォーマーを利用した手法は、3Dセマンティックセグメンテーションにおいて顕著に採用されている。
しかし、局所的な特徴や計算の複雑さが無視されているため、普通の視覚変換器は困難に直面する。
本稿では,SegStitchを提案する。SegStitchは変圧器とODEブロックを結合した革新的なアーキテクチャである。
論文 参考訳(メタデータ) (2024-08-01T12:05:02Z) - A lightweight residual network for unsupervised deformable image registration [2.7309692684728617]
本稿では, 並列拡張畳み込みブロックを組み込んだ残差U-Netを提案する。
本手法は患者間およびアトラスに基づくデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-14T07:20:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
医用画像セグメンテーションのためのシンプルなUNet-Transformer(seUNet-Trans)モデルを提案する。
提案手法では,UNetモデルを特徴抽出器として設計し,入力画像から複数の特徴マップを生成する。
UNetアーキテクチャと自己認識機構を活用することで、我々のモデルはローカルとグローバルの両方のコンテキスト情報を保存するだけでなく、入力要素間の長距離依存関係をキャプチャできる。
論文 参考訳(メタデータ) (2023-10-16T01:13:38Z) - Towards Optimal Patch Size in Vision Transformers for Tumor Segmentation [2.4540404783565433]
転移性大腸癌(mCRC)における腫瘍の検出は,肝癌の早期診断と治療において重要な役割を担っている。
完全畳み込みニューラルネットワーク(FCNN)によってバックボンドされたディープラーニングモデルは、3Dコンピュータ断層撮影(CT)スキャンのセグメンテーションにおいて支配的なモデルとなっている。
視覚変換器は、FCNNの受容野の局所性を解決するために導入された。
本稿では,転移病変の平均体積サイズに基づいて,視覚変換器の最適入力多重解像度画像パッチサイズを選択する手法を提案する。
論文 参考訳(メタデータ) (2023-08-31T09:57:27Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Parameter-Efficient Transformer with Hybrid Axial-Attention for Medical
Image Segmentation [10.441315305453504]
医用画像セグメンテーションのための位置情報を用いた本質的帰納バイアスを探索するパラメータ効率変換器を提案する。
そこで本研究では,空間画素情報と相対位置情報を帰納バイアスとして利用できるハイブリッド軸アテンション(HAA)を提案する。
論文 参考訳(メタデータ) (2022-11-17T13:54:55Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
本研究では,ソースフリードメイン適応(SFDA)の課題について検討する。
我々は、FDAの一般化モデルを学ぶためのTransformer(TransDA)という、汎用的で効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-28T23:06:26Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。