Chiral SQUID-metamaterial waveguide for circuit-QED
- URL: http://arxiv.org/abs/2206.06579v1
- Date: Tue, 14 Jun 2022 03:45:41 GMT
- Title: Chiral SQUID-metamaterial waveguide for circuit-QED
- Authors: Xin Wang, Ya-Fen Lin, Jia-Qi Li, Wen-Xiao Liu, Hong-Rong Li
- Abstract summary: We propose a method to engineer 1D Josephson microwave waveguide as a chiral metamaterial.
We analyze both Markovian and non-Markovian quantum dynamics, and find that superconducting qubits can dissipate photons unidirectionally.
Our work might open the possibilities to exploit SQUID metamaterials realizing unidirectional photon transport in circuit-QED platforms.
- Score: 6.218498009194957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting metamaterials, which are designed and fabricated with
structured fundamental circuit elements, have motivated recent developments of
exploring unconventional quantum phenomena in circuit quantum electrodynamics
(circuit-QED). We propose a method to engineer 1D Josephson metamaterial as a
chiral waveguide by considering a programmed spatiotemporal modulation on its
effective impedance. The modulation currents are in the form of traveling waves
which phase velocities are much slower than the propagation speed of microwave
photons. Due to the Brillouin-scattering process, non-trivial spectrum regimes
where photons can propagate unidirectionally emerge. Considering
superconducting qubits coupling with this metamaterial waveguide, we analyze
both Markovian and non-Markovian quantum dynamics, and find that
superconducting qubits can dissipate photons unidirectionally. Moreover, we
show that our proposal can be extended a cascaded quantum network with multiple
nodes, where chiral photon transport between remote qubits can be realized. Our
work might open the possibilities to exploit SQUID metamaterials for realizing
unidirectional photon transport in circuit-QED platforms.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Generation of time-frequency entangled photon pairs propagating in
separate waveguides in circuit QED setup [0.0]
We propose a generic cavity QED setup designed for on-demand generation of time-frequency entangled photon pairs.
We numerically solve the set of equations of motion governing the evolution of the quantum state of the system.
We compute the entanglement entropy analyzing its dependence on the system parameters.
arXiv Detail & Related papers (2022-07-17T21:09:44Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.