Few-photon transport via a multimode nonlinear cavity: theory and
applications
- URL: http://arxiv.org/abs/2209.03877v1
- Date: Thu, 8 Sep 2022 15:28:05 GMT
- Title: Few-photon transport via a multimode nonlinear cavity: theory and
applications
- Authors: Yunkai Wang and Kejie Fang
- Abstract summary: We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-photon transport via waveguide-coupled local quantum systems has
attracted extensive theoretical and experimental studies. Most of the study has
focused on atomic or atomic-like local quantum systems due to their strong
light-matter interaction useful for quantum applications. Here, we study
few-photon transport via a waveguide-coupled multimode optical cavity with
second-order bulk nonlinearity. We develop a Feynman diagram approach and
compute the scattering matrix of the one- and two-photon transport. Based on
the calculated scattering matrix, we show highly nonclassical photonic effects,
including photon blockade and $\pi-$conditional phase shift, are achievable in
the waveguide-coupled multimode optical cavity system via quantum interference
and linear response engineering. Our results might lead to significant
applications of quantum photonic circuits in all-optical quantum information
processing and quantum network protocols.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Direct observation of non-linear optical phase shift induced by a single
quantum emitter in a waveguide [2.3776015607838747]
We experimentally realize an optical phase shift of $0.19 pi pm 0.03$ radians using a weak coherent state interacting with a single quantum dot.
The nonlinear process is sensitive at the single-photon level and can be made compatible with scalable photonic integrated circuitry.
arXiv Detail & Related papers (2023-05-11T14:32:12Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Experimental reconstruction of the few-photon nonlinear scattering
matrix from a single quantum dot in a nanophotonic waveguide [5.673311327126229]
Coherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions.
We experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide.
arXiv Detail & Related papers (2020-05-30T13:01:07Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.