Semi-Autoregressive Energy Flows: Exploring Likelihood-Free Training of
Normalizing Flows
- URL: http://arxiv.org/abs/2206.06672v2
- Date: Thu, 22 Jun 2023 23:34:39 GMT
- Title: Semi-Autoregressive Energy Flows: Exploring Likelihood-Free Training of
Normalizing Flows
- Authors: Phillip Si, Zeyi Chen, Subham Sekhar Sahoo, Yair Schiff, Volodymyr
Kuleshov
- Abstract summary: This paper studies the likelihood-free training of flows and proposes the energy objective.
The energy objective is determinant-free and supports flexible model architectures.
Our findings question the use of maximum likelihood as an objective or a metric, and contribute to a scientific study of its role in generative modeling.
- Score: 5.096977916317878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training normalizing flow generative models can be challenging due to the
need to calculate computationally expensive determinants of Jacobians. This
paper studies the likelihood-free training of flows and proposes the energy
objective, an alternative sample-based loss based on proper scoring rules. The
energy objective is determinant-free and supports flexible model architectures
that are not easily compatible with maximum likelihood training, including
semi-autoregressive energy flows, a novel model family that interpolates
between fully autoregressive and non-autoregressive models. Energy flows
feature competitive sample quality, posterior inference, and generation speed
relative to likelihood-based flows; this performance is decorrelated from the
quality of log-likelihood estimates, which are generally very poor. Our
findings question the use of maximum likelihood as an objective or a metric,
and contribute to a scientific study of its role in generative modeling.
Related papers
- Feasible Learning [78.6167929413604]
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample.
Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
arXiv Detail & Related papers (2025-01-24T20:39:38Z) - Jet: A Modern Transformer-Based Normalizing Flow [62.2573739835562]
We revisit the design of the coupling-based normalizing flow models by carefully ablating prior design choices.
We achieve state-of-the-art quantitative and qualitative performance with a much simpler architecture.
arXiv Detail & Related papers (2024-12-19T18:09:42Z) - Variational Potential Flow: A Novel Probabilistic Framework for Energy-Based Generative Modelling [10.926841288976684]
We present a novel energy-based generative framework, Variational Potential Flow (VAPO)
VAPO aims to learn a potential energy function whose gradient (flow) guides the prior samples, so that their density evolution closely follows an approximate data likelihood homotopy.
Images can be generated after training the potential energy, by initializing the samples from Gaussian prior and solving the ODE governing the potential flow on a fixed time interval.
arXiv Detail & Related papers (2024-07-21T18:08:12Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
We develop a training procedure that uses an efficient estimator for the gradient of the change of variables formula.
This enables any dimension-preserving neural network to serve as a generative model through maximum likelihood training.
We achieve excellent results in molecule generation benchmarks utilizing $E(n)$-equivariant networks.
arXiv Detail & Related papers (2023-10-25T13:23:08Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Distilling the Knowledge from Normalizing Flows [22.578033953780697]
Normalizing flows are a powerful class of generative models demonstrating strong performance in several speech and vision problems.
We propose a simple distillation approach and demonstrate its effectiveness on state-of-the-art conditional flow-based models for image super-resolution and speech synthesis.
arXiv Detail & Related papers (2021-06-24T00:10:22Z) - EBMs Trained with Maximum Likelihood are Generator Models Trained with a
Self-adverserial Loss [6.445605125467574]
We replace Langevin dynamics with deterministic solutions of the associated gradient descent ODE.
We show that reintroducing the noise in the dynamics does not lead to a qualitative change in the behavior.
We thus show that EBM training is effectively a self-adversarial procedure rather than maximum likelihood estimation.
arXiv Detail & Related papers (2021-02-23T15:34:12Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.