Neural interval-censored survival regression with feature selection
- URL: http://arxiv.org/abs/2206.06885v3
- Date: Thu, 22 Aug 2024 16:48:12 GMT
- Title: Neural interval-censored survival regression with feature selection
- Authors: Carlos GarcĂa Meixide, Marcos Matabuena, Louis Abraham, Michael R. Kosorok,
- Abstract summary: We introduce a novel predictive framework tailored for interval-censored regression tasks rooted in Accelerated Failure Time (AFT) models.
Our results outperform traditional AFT algorithms, particularly in scenarios featuring non-linear relationships.
- Score: 1.933856957193398
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Survival analysis is a fundamental area of focus in biomedical research, particularly in the context of personalized medicine. This prominence is due to the increasing prevalence of large and high-dimensional datasets, such as omics and medical image data. However, the literature on non-linear regression algorithms and variable selection techniques for interval-censoring is either limited or non-existent, particularly in the context of neural networks. Our objective is to introduce a novel predictive framework tailored for interval-censored regression tasks, rooted in Accelerated Failure Time (AFT) models. Our strategy comprises two key components: i) a variable selection phase leveraging recent advances on sparse neural network architectures, ii) a regression model targeting prediction of the interval-censored response. To assess the performance of our novel algorithm, we conducted a comprehensive evaluation through both numerical experiments and real-world applications that encompass scenarios related to diabetes and physical activity. Our results outperform traditional AFT algorithms, particularly in scenarios featuring non-linear relationships.
Related papers
- Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
Survival analysis holds a crucial role across diverse disciplines, such as economics, engineering and healthcare.
We propose a novel survival regression method capable of producing high-quality unimodal PDFs without any prior distribution assumption.
arXiv Detail & Related papers (2024-09-10T04:29:59Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
This paper proposes a physical-guided neural network to estimate the Stemporal dynamics.
We also propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely.
Our model outperforms state-of-the-art methods and performs best in datasets, with a much smaller parameter count.
arXiv Detail & Related papers (2024-05-23T12:39:49Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Robustly Pre-trained Neural Model for Direct Temporal Relation
Extraction [10.832917897850361]
We studied several variants of BERT (Bidirectional Representations using Transformers)
We evaluated these methods using a direct temporal relations dataset which is a semantically focused subset of the 2012 i2b2 temporal relations challenge dataset.
Results: RoBERTa, which employs better pre-training strategies including using 10x larger corpus, has improved overall F measure by 0.0864 absolute score (on the 1.00 scale) and thus reducing the error rate by 24% relative to the previous state-of-the-art performance achieved with an SVM (support vector machine) model.
arXiv Detail & Related papers (2020-04-13T22:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.