Manifold Alignment-Based Multi-Fidelity Reduced-Order Modeling Applied
to Structural Analysis
- URL: http://arxiv.org/abs/2206.06920v1
- Date: Tue, 14 Jun 2022 15:28:21 GMT
- Title: Manifold Alignment-Based Multi-Fidelity Reduced-Order Modeling Applied
to Structural Analysis
- Authors: Christian Perron, Darshan Sarojini, Dushhyanth Rajaram, Jason Corman,
and Dimitri Mavris
- Abstract summary: This work presents the application of a recently developed parametric, non-intrusive, and multi-fidelity reduced-order modeling method on high-dimensional displacement and stress fields.
Results show that outputs from structural simulations using incompatible grids, or related yet different topologies, are easily combined into a single predictive model.
The new multi-fidelity reduced-order model achieves a relatively higher predictive accuracy at a lower computational cost when compared to a single-fidelity model.
- Score: 0.8808021343665321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents the application of a recently developed parametric,
non-intrusive, and multi-fidelity reduced-order modeling method on
high-dimensional displacement and stress fields arising from the structural
analysis of geometries that differ in the size of discretization and structural
topology.The proposed approach leverages manifold alignment to fuse
inconsistent field outputs from high- and low-fidelity simulations by
individually projecting their solution onto a common subspace. The
effectiveness of the method is demonstrated on two multi-fidelity scenarios
involving the structural analysis of a benchmark wing geometry. Results show
that outputs from structural simulations using incompatible grids, or related
yet different topologies, are easily combined into a single predictive model,
thus eliminating the need for additional pre-processing of the data. The new
multi-fidelity reduced-order model achieves a relatively higher predictive
accuracy at a lower computational cost when compared to a single-fidelity
model.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Data-driven reduced-order modelling for blood flow simulations with
geometry-informed snapshots [0.0]
A data-driven surrogate model is proposed for the efficient prediction of blood flow simulations on similar but distinct domains.
A non-intrusive reduced-order model for geometrical parameters is constructed using proper decomposition.
A radial basis function interpolator is trained for predicting the reduced coefficients of the reduced-order model.
arXiv Detail & Related papers (2023-02-21T21:18:17Z) - An iterative multi-fidelity approach for model order reduction of
multi-dimensional input parametric PDE systems [0.0]
We propose a sampling parametric strategy for the reduction of large-scale PDE systems with multidimensional input parametric spaces.
It is achieved by exploiting low-fidelity models throughout the parametric space to sample points using an efficient sampling strategy.
Since the proposed methodology leverages the use of low-fidelity models to assimilate the solution database, it significantly reduces the computational cost in the offline stage.
arXiv Detail & Related papers (2023-01-23T15:25:58Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.