An iterative multi-fidelity approach for model order reduction of
multi-dimensional input parametric PDE systems
- URL: http://arxiv.org/abs/2301.09483v1
- Date: Mon, 23 Jan 2023 15:25:58 GMT
- Title: An iterative multi-fidelity approach for model order reduction of
multi-dimensional input parametric PDE systems
- Authors: Manisha Chetry, Domenico Borzacchiello, Lucas Lestandi, Luisa Rocha Da
Silva
- Abstract summary: We propose a sampling parametric strategy for the reduction of large-scale PDE systems with multidimensional input parametric spaces.
It is achieved by exploiting low-fidelity models throughout the parametric space to sample points using an efficient sampling strategy.
Since the proposed methodology leverages the use of low-fidelity models to assimilate the solution database, it significantly reduces the computational cost in the offline stage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a parametric sampling strategy for the reduction of large-scale
PDE systems with multidimensional input parametric spaces by leveraging models
of different fidelity. The design of this methodology allows a user to
adaptively sample points ad hoc from a discrete training set with no prior
requirement of error estimators. It is achieved by exploiting low-fidelity
models throughout the parametric space to sample points using an efficient
sampling strategy, and at the sampled parametric points, high-fidelity models
are evaluated to recover the reduced basis functions. The low-fidelity models
are then adapted with the reduced order models ( ROMs) built by projection onto
the subspace spanned by the recovered basis functions. The process continues
until the low-fidelity model can represent the high-fidelity model adequately
for all the parameters in the parametric space. Since the proposed methodology
leverages the use of low-fidelity models to assimilate the solution database,
it significantly reduces the computational cost in the offline stage. The
highlight of this article is to present the construction of the initial
low-fidelity model, and a sampling strategy based on the discrete empirical
interpolation method (DEIM). We test this approach on a 2D steady-state heat
conduction problem for two different input parameters and make a qualitative
comparison with the classical greedy reduced basis method (RBM), and further
test on a 9-dimensional parametric non-coercive elliptic problem and analyze
the computational performance based on different tuning of greedy selection of
points.
Related papers
- Dimension reduction via score ratio matching [0.9012198585960441]
We propose a framework, derived from score-matching, to extend gradient-based dimension reduction to problems where gradients are unavailable.
We show that our approach outperforms standard score-matching for problems with low-dimensional structure.
arXiv Detail & Related papers (2024-10-25T22:21:03Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - On stable wrapper-based parameter selection method for efficient
ANN-based data-driven modeling of turbulent flows [2.0731505001992323]
This study aims to analyze and develop a reduced modeling approach based on artificial neural network (ANN) and wrapper methods.
It is found that the gradient-based subset selection to minimize the total derivative loss results in improved consistency-over-trials.
For the reduced turbulent Prandtl number model, the gradient-based subset selection improves the prediction in the validation case over the other methods.
arXiv Detail & Related papers (2023-08-04T08:26:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
We develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map.
In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields.
arXiv Detail & Related papers (2021-03-10T17:01:42Z) - Bayesian multiscale deep generative model for the solution of
high-dimensional inverse problems [0.0]
A novel multiscale Bayesian inference approach is introduced based on deep probabilistic generative models.
The method allows high-dimensional parameter estimation while exhibiting stability, efficiency and accuracy.
arXiv Detail & Related papers (2021-02-04T11:47:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.