論文の概要: Computational linguistics and Natural Language Processing
- arxiv url: http://arxiv.org/abs/2206.07026v1
- Date: Tue, 14 Jun 2022 17:43:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-15 14:38:18.392989
- Title: Computational linguistics and Natural Language Processing
- Title(参考訳): 計算言語学と自然言語処理
- Authors: Saturnino Luz
- Abstract要約: この章は、計算言語学の手法の紹介であり、翻訳の実践と研究への応用に焦点をあてている。
翻訳の文脈における言語データの収集、記憶、索引付け、分析のための計算モデル、方法、ツールを網羅し、この分野における主要な方法論的問題と課題について論じる。
- 参考スコア(独自算出の注目度): 6.657723602564178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter provides an introduction to computational linguistics methods,
with focus on their applications to the practice and study of translation. It
covers computational models, methods and tools for collection, storage,
indexing and analysis of linguistic data in the context of translation, and
discusses the main methodological issues and challenges in this field. While an
exhaustive review of existing computational linguistics methods and tools is
beyond the scope of this chapter, we describe the most representative
approaches, and illustrate them with descriptions of typical applications.
- Abstract(参考訳): 本章は、翻訳の実践と研究への応用に焦点をあてて、計算言語学の手法を概説する。
翻訳の文脈における言語データの収集、保存、索引付け、分析のための計算モデル、方法、ツールを取り上げ、この分野の主要な方法論的問題と課題について論じる。
既存の計算言語学の手法やツールの徹底的なレビューは、この章の範囲を超えているが、最も代表的なアプローチを解説し、典型的な応用について解説する。
関連論文リスト
- From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models [17.04716417556556]
本稿では,分布仮説や文脈的類似性といった基礎概念を概観する。
本稿では, ELMo, BERT, GPTなどのモデルにおいて, 静的な埋め込みと文脈的埋め込みの両方について検討する。
議論は文章や文書の埋め込みにまで拡張され、集約メソッドや生成トピックモデルをカバーする。
モデル圧縮、解釈可能性、数値エンコーディング、バイアス緩和といった高度なトピックを分析し、技術的な課題と倫理的意味の両方に対処する。
論文 参考訳(メタデータ) (2024-11-06T15:40:02Z) - Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations [0.0]
大規模な言語モデルは自然言語処理においてユビキタスである。
本稿では,資源要件の低減と大規模言語モデルの圧縮に関する諸技術について概説する。
論文 参考訳(メタデータ) (2024-08-06T12:07:32Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
言語間アライメントは多言語言語モデルにおける言語間の表現の有意義な類似性である。
本研究は,言語間アライメントの向上,手法の分類,分野全体からの洞察の要約といった手法の文献を調査する。
論文 参考訳(メタデータ) (2024-04-09T11:39:53Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Linguistics from a topological viewpoint [2.4238741865874363]
本稿では,南アメリカの言語のトポロジカルな形状を解析するためのワークフローについて述べる。
その結果、データの明確な可視化は困難である。
論文 参考訳(メタデータ) (2024-03-16T23:10:42Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Probing via Prompting [71.7904179689271]
本稿では,探索をプロンプトタスクとして定式化することで,新しいモデルフリーな探索手法を提案する。
我々は5つの探索課題について実験を行い、我々のアプローチが診断プローブよりも情報抽出に優れていることを示す。
次に,その特性に不可欠な頭部を除去し,言語モデリングにおけるモデルの性能を評価することにより,事前学習のための特定の言語特性の有用性を検討する。
論文 参考訳(メタデータ) (2022-07-04T22:14:40Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
我々は、言語モデルが、認識、識別、抽出、言い換えの4つのタスクのセマンティクスをいかにうまく捉えているかを評価する。
分析の結果,言語モデルでは,ジェンダーや政治的アフィリエイトなど,様々なバイアス次元にまたがって,これらのタスクを広範囲にわたって実行することが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-16T05:36:08Z) - Distributed Linguistic Representations in Decision Making: Taxonomy, Key
Elements and Applications, and Challenges in Data Science and Explainable
Artificial Intelligence [26.908909011805502]
本稿では,既存の分散言語表現の分類について述べる。
意思決定における分散言語情報処理の重要要素について概観する。
次に、データサイエンスと説明可能な人工知能の観点から、現在進行中の課題と今後の研究方向性について論じる。
論文 参考訳(メタデータ) (2020-08-04T13:13:59Z) - Natural Language Processing Advancements By Deep Learning: A Survey [0.755972004983746]
この調査は、ディープラーニングの恩恵を受けたNLPのさまざまな側面と応用を分類し、対処する。
コアNLPタスクとアプリケーションをカバーするもので、深層学習手法とモデルがどのようにこれらの領域を前進させるかを記述している。
論文 参考訳(メタデータ) (2020-03-02T21:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。