Defending Observation Attacks in Deep Reinforcement Learning via
Detection and Denoising
- URL: http://arxiv.org/abs/2206.07188v1
- Date: Tue, 14 Jun 2022 22:28:30 GMT
- Title: Defending Observation Attacks in Deep Reinforcement Learning via
Detection and Denoising
- Authors: Zikang Xiong, Joe Eappen, He Zhu, and Suresh Jagannathan
- Abstract summary: Attacks manifesting as perturbations in the observation space managed by the external environment have been shown to downgrade policy performance.
To defend against these attacks, we propose a novel defense strategy using a detect-and-denoise schema.
Our solution does not require sampling data in an environment under attack, thereby greatly reducing risk during training.
- Score: 3.2023814100005907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network policies trained using Deep Reinforcement Learning (DRL) are
well-known to be susceptible to adversarial attacks. In this paper, we consider
attacks manifesting as perturbations in the observation space managed by the
external environment. These attacks have been shown to downgrade policy
performance significantly. We focus our attention on well-trained deterministic
and stochastic neural network policies in the context of continuous control
benchmarks subject to four well-studied observation space adversarial attacks.
To defend against these attacks, we propose a novel defense strategy using a
detect-and-denoise schema. Unlike previous adversarial training approaches that
sample data in adversarial scenarios, our solution does not require sampling
data in an environment under attack, thereby greatly reducing risk during
training. Detailed experimental results show that our technique is comparable
with state-of-the-art adversarial training approaches.
Related papers
- Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Targeted Attack on Deep RL-based Autonomous Driving with Learned Visual
Patterns [18.694795507945603]
Recent studies demonstrated the vulnerability of control policies learned through deep reinforcement learning against adversarial attacks.
This paper investigates the feasibility of targeted attacks through visually learned patterns placed on physical object in the environment.
arXiv Detail & Related papers (2021-09-16T04:59:06Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs)
This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods.
arXiv Detail & Related papers (2021-09-15T09:13:10Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Where Did You Learn That From? Surprising Effectiveness of Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning [114.9857000195174]
A major challenge to widespread industrial adoption of deep reinforcement learning is the potential vulnerability to privacy breaches.
We propose an adversarial attack framework tailored for testing the vulnerability of deep reinforcement learning algorithms to membership inference attacks.
arXiv Detail & Related papers (2021-09-08T23:44:57Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z) - Understanding Adversarial Attacks on Observations in Deep Reinforcement
Learning [32.12283927682007]
Deep reinforcement learning models are vulnerable to adversarial attacks which can decrease the victim's total reward by manipulating the observations.
We reformulate the problem of adversarial attacks in function space and separate the previous gradient based attacks into several subspaces.
In the first stage, we train a deceptive policy by hacking the environment, and discover a set of trajectories routing to the lowest reward.
Our method provides a tighter theoretical upper bound for the attacked agent's performance than the existing approaches.
arXiv Detail & Related papers (2021-06-30T07:41:51Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.