Toward Spiking Neural Network Local Learning Modules Resistant to Adversarial Attacks
- URL: http://arxiv.org/abs/2504.08897v1
- Date: Fri, 11 Apr 2025 18:07:59 GMT
- Title: Toward Spiking Neural Network Local Learning Modules Resistant to Adversarial Attacks
- Authors: Jiaqi Lin, Abhronil Sengupta,
- Abstract summary: Recent research has shown the vulnerability of Spiking Neural Networks (SNNs) under adversarial examples.<n>We introduce a hybrid adversarial attack paradigm that leverages the transferability of adversarial instances.<n>The proposed hybrid approach demonstrates superior performance, outperforming existing adversarial attack methods.
- Score: 2.3312335998006306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has shown the vulnerability of Spiking Neural Networks (SNNs) under adversarial examples that are nearly indistinguishable from clean data in the context of frame-based and event-based information. The majority of these studies are constrained in generating adversarial examples using Backpropagation Through Time (BPTT), a gradient-based method which lacks biological plausibility. In contrast, local learning methods, which relax many of BPTT's constraints, remain under-explored in the context of adversarial attacks. To address this problem, we examine adversarial robustness in SNNs through the framework of four types of training algorithms. We provide an in-depth analysis of the ineffectiveness of gradient-based adversarial attacks to generate adversarial instances in this scenario. To overcome these limitations, we introduce a hybrid adversarial attack paradigm that leverages the transferability of adversarial instances. The proposed hybrid approach demonstrates superior performance, outperforming existing adversarial attack methods. Furthermore, the generalizability of the method is assessed under multi-step adversarial attacks, adversarial attacks in black-box FGSM scenarios, and within the non-spiking domain.
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Beyond Empirical Risk Minimization: Local Structure Preserving
Regularization for Improving Adversarial Robustness [28.853413482357634]
Local Structure Preserving (LSP) regularization aims to preserve the local structure of the input space in the learned embedding space.
In this work, we propose a novel Local Structure Preserving (LSP) regularization, which aims to preserve the local structure of the input space in the learned embedding space.
arXiv Detail & Related papers (2023-03-29T17:18:58Z) - Defending Observation Attacks in Deep Reinforcement Learning via
Detection and Denoising [3.2023814100005907]
Attacks manifesting as perturbations in the observation space managed by the external environment have been shown to downgrade policy performance.
To defend against these attacks, we propose a novel defense strategy using a detect-and-denoise schema.
Our solution does not require sampling data in an environment under attack, thereby greatly reducing risk during training.
arXiv Detail & Related papers (2022-06-14T22:28:30Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs)
This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods.
arXiv Detail & Related papers (2021-09-15T09:13:10Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
Deep neural networks are vulnerable to intentionally crafted adversarial examples.
Various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models.
arXiv Detail & Related papers (2021-08-29T08:11:36Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
arXiv Detail & Related papers (2020-07-10T00:43:06Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.