The Manifold Hypothesis for Gradient-Based Explanations
- URL: http://arxiv.org/abs/2206.07387v2
- Date: Mon, 15 Jul 2024 09:44:31 GMT
- Title: The Manifold Hypothesis for Gradient-Based Explanations
- Authors: Sebastian Bordt, Uddeshya Upadhyay, Zeynep Akata, Ulrike von Luxburg,
- Abstract summary: gradient-based explanation algorithms provide perceptually-aligned explanations.
We show that the more a feature attribution is aligned with the tangent space of the data, the more perceptually-aligned it tends to be.
We suggest that explanation algorithms should actively strive to align their explanations with the data manifold.
- Score: 55.01671263121624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When do gradient-based explanation algorithms provide perceptually-aligned explanations? We propose a criterion: the feature attributions need to be aligned with the tangent space of the data manifold. To provide evidence for this hypothesis, we introduce a framework based on variational autoencoders that allows to estimate and generate image manifolds. Through experiments across a range of different datasets -- MNIST, EMNIST, CIFAR10, X-ray pneumonia and Diabetic Retinopathy detection -- we demonstrate that the more a feature attribution is aligned with the tangent space of the data, the more perceptually-aligned it tends to be. We then show that the attributions provided by popular post-hoc methods such as Integrated Gradients and SmoothGrad are more strongly aligned with the data manifold than the raw gradient. Adversarial training also improves the alignment of model gradients with the data manifold. As a consequence, we suggest that explanation algorithms should actively strive to align their explanations with the data manifold. This is an extended version of a CVPR Workshop paper. Code is available at https://github.com/tml-tuebingen/explanations-manifold.
Related papers
- Recovering Manifold Structure Using Ollivier-Ricci Curvature [1.9458156037869137]
We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion.
Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold.
arXiv Detail & Related papers (2024-10-02T01:00:30Z) - Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
We propose a diffusion learning framework, where the range of feature aggregation is controlled by the scale of a diffusion kernel.
Our model is tested on various standard for node-wise classification for the state-of-the-art datasets performance.
It is also validated on a real-world brain network data for graph classifications to demonstrate its practicality for Alzheimer classification.
arXiv Detail & Related papers (2024-01-22T10:57:11Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Gradient-Based Spectral Embeddings of Random Dot Product Graphs [7.612218105739107]
In this paper, we show how to better solve the embedding problem of the Random Dot Product Graph (RDPG)
We develop a novel feasible optimization method in the resulting manifold.
Our open-source algorithm implementations are scalable, and unlike the they are robust to missing edge data and can track slowly, latent positions from streaming graphs.
arXiv Detail & Related papers (2023-07-25T21:09:55Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Convolutional Filtering on Sampled Manifolds [122.06927400759021]
We show that convolutional filtering on a sampled manifold converges to continuous manifold filtering.
Our findings are further demonstrated empirically on a problem of navigation control.
arXiv Detail & Related papers (2022-11-20T19:09:50Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
Recent zeroth order hard-label attacks on image classification models have shown comparable performance to their first-order, gradient-level alternatives.
It was recently shown in the gradient-level setting that regular adversarial examples leave the data manifold, while their on-manifold counterparts are in fact generalization errors.
We propose an information-theoretic argument based on a noisy manifold distance oracle, which leaks manifold information through the adversary's gradient estimate.
arXiv Detail & Related papers (2021-03-04T20:53:06Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.