Recovering Manifold Structure Using Ollivier-Ricci Curvature
- URL: http://arxiv.org/abs/2410.01149v1
- Date: Wed, 2 Oct 2024 01:00:30 GMT
- Title: Recovering Manifold Structure Using Ollivier-Ricci Curvature
- Authors: Tristan Luca Saidi, Abigail Hickok, Andrew J. Blumberg,
- Abstract summary: We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion.
Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold.
- Score: 1.9458156037869137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion. Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold. We demonstrate that our method outperforms alternative pruning methods and that it significantly improves performance on many downstream geometric data analysis tasks that use nearest neighbor graphs as input. Specifically, we evaluate on manifold learning, persistent homology, dimension estimation, and others. We also show that ORC-ManL can be used to improve clustering and manifold learning of single-cell RNA sequencing data. Finally, we provide empirical convergence experiments that support our theoretical findings.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Study of Manifold Geometry using Multiscale Non-Negative Kernel Graphs [32.40622753355266]
We propose a framework to study the geometric structure of the data.
We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and the linearity of the data manifold (curvature)
arXiv Detail & Related papers (2022-10-31T17:01:17Z) - Diffusion Models for Causal Discovery via Topological Ordering [20.875222263955045]
emphTopological ordering approaches reduce the optimisation space of causal discovery by searching over a permutation rather than graph space.
For ANMs, the emphHessian of the data log-likelihood can be used for finding leaf nodes in a causal graph, allowing its topological ordering.
We introduce theory for updating the learned Hessian without re-training the neural network, and we show that computing with a subset of samples gives an accurate approximation of the ordering.
arXiv Detail & Related papers (2022-10-12T13:36:29Z) - From Spectral Graph Convolutions to Large Scale Graph Convolutional
Networks [0.0]
Graph Convolutional Networks (GCNs) have been shown to be a powerful concept that has been successfully applied to a large variety of tasks.
We study the theory that paved the way to the definition of GCN, including related parts of classical graph theory.
arXiv Detail & Related papers (2022-07-12T16:57:08Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
gradient-based explanation algorithms provide perceptually-aligned explanations.
We show that the more a feature attribution is aligned with the tangent space of the data, the more perceptually-aligned it tends to be.
We suggest that explanation algorithms should actively strive to align their explanations with the data manifold.
arXiv Detail & Related papers (2022-06-15T08:49:24Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.