論文の概要: Predicting Gender via Eye Movements
- arxiv url: http://arxiv.org/abs/2206.07442v1
- Date: Wed, 15 Jun 2022 10:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 00:58:14.918475
- Title: Predicting Gender via Eye Movements
- Title(参考訳): 眼球運動による性別予測
- Authors: Rishabh Vallabh Varsha Haria, Sahar Mahdie Klim Al Zaidawi, Sebastian
Maneth
- Abstract要約: 眼球運動による性別予測の最初の安定した結果を報告する。
顔の画像を用いたデータセットを刺激として使用し、370人の参加者を多数参加させた。
以上の結果から,女性の方が刺激の左目に対して偏見が強いことが示唆された。
- 参考スコア(独自算出の注目度): 2.0625936401496237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we report the first stable results on gender prediction via
eye movements. We use a dataset with images of faces as stimuli and with a
large number of 370 participants. Stability has two meanings for us: first that
we are able to estimate the standard deviation (SD) of a single prediction
experiment (it is around 4.1 %); this is achieved by varying the number of
participants. And second, we are able to provide a mean accuracy with a very
low standard error (SEM): our accuracy is 65.2 %, and the SEM is 0.80 %; this
is achieved through many runs of randomly selecting training and test sets for
the prediction. Our study shows that two particular classifiers achieve the
best accuracies: Random Forests and Logistic Regression. Our results reconfirm
previous findings that females are more biased towards the left eyes of the
stimuli.
- Abstract(参考訳): 本稿では,眼球運動による性別予測の最初の安定結果を報告する。
顔の画像を用いたデータセットを刺激として使用し、370人の参加者を多数参加させた。
安定性には2つの意味がある: まず1つの予測実験の標準偏差(SD)を推定できる(約4.1%)。
第2に、非常に低い標準誤差(sem)で平均精度を提供することが出来ます。我々の精度は65.2%で、semは0.80%です。これは予測のためにランダムにトレーニングとテストセットを選択した多くの実行によって達成されます。
本研究は,ランダム林とロジスティック回帰の2つの分類器が最善の精度を達成していることを示す。
以上の結果から,女性の方が左眼に偏りが強いことが示唆された。
関連論文リスト
- Predicting Overtakes in Trucks Using CAN Data [51.28632782308621]
CANデータからトラックの積載量の検出について検討する。
私たちの分析では、オーバーテイクイベントの最大10秒前をカバーしています。
我々は、オーバーテイク・トリガーに近づくと、オーバーテイク・クラスの予測スコアが増加する傾向にあることを観察する。
論文 参考訳(メタデータ) (2024-04-08T17:58:22Z) - AI Gender Bias, Disparities, and Fairness: Does Training Data Matter? [3.509963616428399]
この研究は、人工知能(AI)におけるジェンダー問題に関する広範囲にわたる課題について考察する。
それは、6つの評価項目で男女1000人以上の学生の反応を分析する。
その結果,混合学習モデルのスコアリング精度は,男性モデルと女性モデルとでは有意な差があることが示唆された。
論文 参考訳(メタデータ) (2023-12-17T22:37:06Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
この研究は、ラベルを使わずに、分散シフト下でのモデルの性能を評価することを目的としている。
我々は、両方の特性を特徴付けるのに有効であることが示されている核規範を用いる。
核の基準は既存の手法よりも正確で堅牢であることを示す。
論文 参考訳(メタデータ) (2023-02-02T13:30:48Z) - The Gender Gap in Face Recognition Accuracy Is a Hairy Problem [8.768049933358968]
まず、男女の髪型が顔の認識精度に影響を及ぼす重要な違いがあることを実証する。
そして、認識精度を推定するために使用されるデータが、髪型が顔を妨げるかによって性別間でバランスが取れている場合、当初観察された精度の男女差が大きく消失することを示した。
論文 参考訳(メタデータ) (2022-06-10T04:32:47Z) - Gendered Differences in Face Recognition Accuracy Explained by
Hairstyles, Makeup, and Facial Morphology [11.50297186426025]
女性には顔認識精度が低いという研究文献に合意がある。
テスト画像中の可視面の等しい量の制御は、女性にとって明らかに高い偽非一致率を緩和する。
さらなる分析により、化粧バランスの取れたデータセットは女性をさらに改善し、偽の非マッチ率を低くすることが示された。
論文 参考訳(メタデータ) (2021-12-29T17:07:33Z) - Exploring Biases and Prejudice of Facial Synthesis via Semantic Latent
Space [1.858151490268935]
この研究は、生成モデルの振る舞いをバイアス化し、バイアスの原因を特定し、それらを取り除くことを目的としている。
予想通り、偏りのあるデータが顔のフロンダル化モデルの偏りのある予測を引き起こすと結論付けることができる。
その結果、50:50の割合の明らかな選択は、このデータセットが女性の顔に偏った振る舞いを減らすのに最適ではないことがわかった。
論文 参考訳(メタデータ) (2021-08-23T16:09:18Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z) - Do Neural Ranking Models Intensify Gender Bias? [13.37092521347171]
まず、IRモデルのランキングリストにおいて、性別関連概念の非バランスの存在度を定量化するための2つの指標を含むバイアス測定フレームワークを提供する。
これらのクエリをMS MARCOパッセージ検索コレクションに適用し、BM25モデルと最近のニューラルランキングモデルの性別バイアスを測定する。
結果は、すべてのモデルが男性に対して強く偏りを呈する一方で、神経モデル、特に文脈化された埋め込みモデルに基づくモデルは、性バイアスを著しく強めていることを示している。
論文 参考訳(メタデータ) (2020-05-01T13:31:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。