Clustered Scheduling and Communication Pipelining For Efficient Resource
Management Of Wireless Federated Learning
- URL: http://arxiv.org/abs/2206.07631v1
- Date: Wed, 15 Jun 2022 16:23:19 GMT
- Title: Clustered Scheduling and Communication Pipelining For Efficient Resource
Management Of Wireless Federated Learning
- Authors: Cihat Ke\c{c}eci, Mohammad Shaqfeh, Fawaz Al-Qahtani, Muhammad Ismail,
and Erchin Serpedin
- Abstract summary: This paper proposes using communication pipelining to enhance the wireless spectrum utilization efficiency and convergence speed of federated learning.
We provide a generic formulation for optimal client clustering under different settings, and we analytically derive an efficient algorithm for obtaining the optimal solution.
- Score: 6.753282396352072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes using communication pipelining to enhance the wireless
spectrum utilization efficiency and convergence speed of federated learning in
mobile edge computing applications. Due to limited wireless sub-channels, a
subset of the total clients is scheduled in each iteration of federated
learning algorithms. On the other hand, the scheduled clients wait for the
slowest client to finish its computation. We propose to first cluster the
clients based on the time they need per iteration to compute the local
gradients of the federated learning model. Then, we schedule a mixture of
clients from all clusters to send their local updates in a pipelined manner. In
this way, instead of just waiting for the slower clients to finish their
computation, more clients can participate in each iteration. While the time
duration of a single iteration does not change, the proposed method can
significantly reduce the number of required iterations to achieve a target
accuracy. We provide a generic formulation for optimal client clustering under
different settings, and we analytically derive an efficient algorithm for
obtaining the optimal solution. We also provide numerical results to
demonstrate the gains of the proposed method for different datasets and deep
learning architectures.
Related papers
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
Federated learning (FL) aims to learn a common global model without exchanging or transferring the data that are stored locally at different clients.
In this paper, we propose an efficient federated learning (AFL) framework called DeFedAvg.
DeFedAvg is the first AFL algorithm that achieves the desirable linear speedup property, which indicates its high scalability.
arXiv Detail & Related papers (2024-02-17T05:22:46Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - FilFL: Client Filtering for Optimized Client Participation in Federated Learning [71.46173076298957]
Federated learning enables clients to collaboratively train a model without exchanging local data.
Clients participating in the training process significantly impact the convergence rate, learning efficiency, and model generalization.
We propose a novel approach, client filtering, to improve model generalization and optimize client participation and training.
arXiv Detail & Related papers (2023-02-13T18:55:31Z) - Client Selection Approach in Support of Clustered Federated Learning
over Wireless Edge Networks [2.6774008509840996]
Clustered Federated Multitask Learning (CFL) was introduced as an efficient scheme to obtain reliable specialized models.
This paper proposes a new client selection algorithm that aims to accelerate the convergence rate for obtaining specialized machine learning models.
arXiv Detail & Related papers (2021-08-16T21:38:22Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMO is the first (first-order) FLtexttFedGLOMO algorithm.
Our algorithm is provably optimal even with communication between the clients and the server.
arXiv Detail & Related papers (2020-12-07T21:05:31Z) - Distributed Non-Convex Optimization with Sublinear Speedup under
Intermittent Client Availability [46.85205907718874]
Federated learning is a new machine learning framework, where a bunch of clients collaboratively train a model without sharing training data.
In this work, we consider a practical and issue when deploying federated learning in intermittent mobile environments.
We propose a simple distributed nonlinear optimization algorithm, called Federated Latest Averaging (FedLaAvg for short)
Our theoretical analysis shows that FedLaAvg attains the convergence rate of $(E1/2/(NT1/2)$, achieving a sublinear speed with respect to the total number of clients.
arXiv Detail & Related papers (2020-02-18T06:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.