AVATAR: Unconstrained Audiovisual Speech Recognition
- URL: http://arxiv.org/abs/2206.07684v1
- Date: Wed, 15 Jun 2022 17:33:19 GMT
- Title: AVATAR: Unconstrained Audiovisual Speech Recognition
- Authors: Valentin Gabeur, Paul Hongsuck Seo, Arsha Nagrani, Chen Sun, Karteek
Alahari, Cordelia Schmid
- Abstract summary: We propose a new sequence-to-sequence AudioVisual ASR TrAnsformeR (AVATAR) trained end-to-end from spectrograms and full-frame RGB.
We demonstrate the contribution of the visual modality on the How2 AV-ASR benchmark, especially in the presence of simulated noise.
We also create a new, real-world test bed for AV-ASR called VisSpeech, which demonstrates the contribution of the visual modality under challenging audio conditions.
- Score: 75.17253531162608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-visual automatic speech recognition (AV-ASR) is an extension of ASR
that incorporates visual cues, often from the movements of a speaker's mouth.
Unlike works that simply focus on the lip motion, we investigate the
contribution of entire visual frames (visual actions, objects, background
etc.). This is particularly useful for unconstrained videos, where the speaker
is not necessarily visible. To solve this task, we propose a new
sequence-to-sequence AudioVisual ASR TrAnsformeR (AVATAR) which is trained
end-to-end from spectrograms and full-frame RGB. To prevent the audio stream
from dominating training, we propose different word-masking strategies, thereby
encouraging our model to pay attention to the visual stream. We demonstrate the
contribution of the visual modality on the How2 AV-ASR benchmark, especially in
the presence of simulated noise, and show that our model outperforms all other
prior work by a large margin. Finally, we also create a new, real-world test
bed for AV-ASR called VisSpeech, which demonstrates the contribution of the
visual modality under challenging audio conditions.
Related papers
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
We introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation.
VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively.
Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features.
arXiv Detail & Related papers (2024-09-27T20:26:34Z) - Robust Audiovisual Speech Recognition Models with Mixture-of-Experts [67.75334989582709]
We introduce EVA, leveraging the mixture-of-Experts for audioVisual ASR to perform robust speech recognition for in-the-wild'' videos.
We first encode visual information into visual tokens sequence and map them into speech space by a lightweight projection.
Experiments show our model achieves state-of-the-art results on three benchmarks.
arXiv Detail & Related papers (2024-09-19T00:08:28Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
We propose a Bidirectional Audio-Visual Decoder (BAVD) with integrated bidirectional bridges.
This interaction narrows the modality imbalance, facilitating more effective learning of integrated audio-visual representations.
We also present a strategy for audio-visual frame-wise synchrony as fine-grained guidance of BAVD.
arXiv Detail & Related papers (2024-02-04T03:02:35Z) - Cooperative Dual Attention for Audio-Visual Speech Enhancement with
Facial Cues [80.53407593586411]
We focus on leveraging facial cues beyond the lip region for robust Audio-Visual Speech Enhancement (AVSE)
We propose a Dual Attention Cooperative Framework, DualAVSE, to ignore speech-unrelated information, capture speech-related information with facial cues, and dynamically integrate it with the audio signal for AVSE.
arXiv Detail & Related papers (2023-11-24T04:30:31Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
We present AVFormer, a method for augmenting audio-only models with visual information, at the same time performing lightweight domain adaptation.
We show that these can be trained on a small amount of weakly labelled video data with minimum additional training time and parameters.
We also introduce a simple curriculum scheme during training which we show is crucial to enable the model to jointly process audio and visual information effectively.
arXiv Detail & Related papers (2023-03-29T07:24:28Z) - Egocentric Audio-Visual Noise Suppression [11.113020254726292]
This paper studies audio-visual noise suppression for egocentric videos.
Video camera emulates off-screen speaker's view of the outside world.
We first demonstrate that egocentric visual information is helpful for noise suppression.
arXiv Detail & Related papers (2022-11-07T15:53:12Z) - AVA-AVD: Audio-visual Speaker Diarization in the Wild [26.97787596025907]
Existing audio-visual diarization datasets are mainly focused on indoor environments like meeting rooms or news studios.
We propose a novel Audio-Visual Relation Network (AVR-Net) which introduces an effective modality mask to capture discriminative information based on visibility.
arXiv Detail & Related papers (2021-11-29T11:02:41Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
We introduce a novel self-supervised pretext task for learning representations from audio-visual content.
The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks.
arXiv Detail & Related papers (2020-11-03T16:20:04Z) - How to Teach DNNs to Pay Attention to the Visual Modality in Speech
Recognition [10.74796391075403]
This study investigates the inner workings of AV Align and visualises the audio-visual alignment patterns.
We find that AV Align learns to align acoustic and visual representations of speech at the frame level on TCD-TIMIT in a generally monotonic pattern.
We propose a regularisation method which involves predicting lip-related Action Units from visual representations.
arXiv Detail & Related papers (2020-04-17T13:59:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.