論文の概要: DIRECTOR: Generator-Classifiers For Supervised Language Modeling
- arxiv url: http://arxiv.org/abs/2206.07694v1
- Date: Wed, 15 Jun 2022 17:44:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 14:19:09.917102
- Title: DIRECTOR: Generator-Classifiers For Supervised Language Modeling
- Title(参考訳): DIRECTOR: 教師付き言語モデリングのためのジェネレータ
- Authors: Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar and Jason Weston
- Abstract要約: 現在の言語モデルは難易度は低いが、結果として生じる世代は依然として有毒な反応、反復性、矛盾に悩まされている。
我々は,各出力トークンに対して,言語モデリングと分類ヘッドを併用した統一型ジェネレータからなる新しいアーキテクチャであるc Directorを導入する。
- 参考スコア(独自算出の注目度): 27.86870968048833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current language models achieve low perplexity but their resulting
generations still suffer from toxic responses, repetitiveness and
contradictions. The standard language modeling setup fails to address these
issues. In this paper, we introduce a new architecture, {\sc Director}, that
consists of a unified generator-classifier with both a language modeling and a
classification head for each output token. Training is conducted jointly using
both standard language modeling data, and data labeled with desirable and
undesirable sequences. Experiments in several settings show that the model has
competitive training and decoding speed compared to standard language models
while yielding superior results, alleviating known issues while maintaining
generation quality. It also outperforms existing model guiding approaches in
terms of both accuracy and efficiency.
- Abstract(参考訳): 現在の言語モデルは難易度は低いが、結果として生じる世代は依然として有毒な反応、反復性、矛盾に悩まされている。
標準言語モデリングのセットアップはこれらの問題に対処できない。
本稿では,各出力トークンに対する言語モデリングと分類ヘッドの両方を備えた統一型ジェネレータからなる新しいアーキテクチャである {\sc Director}を紹介する。
トレーニングは、標準言語モデリングデータと、望ましい、望ましくないシーケンスでラベル付けされたデータの両方を使って行われる。
いくつかの環境での実験では、このモデルは標準言語モデルと比較して競争力のあるトレーニングとデコード速度を有し、優れた結果を得る一方で、世代品質を維持しながら既知の問題を緩和する。
また、精度と効率の両面で、既存のモデルガイドアプローチよりも優れています。
関連論文リスト
- Generative Pre-training for Speech with Flow Matching [81.59952572752248]
我々は,フローマッチングとマスク条件を併用した60k時間の無転写音声に対して,SpeechFlowという生成モデルを事前学習した。
実験結果から,事前学習した生成モデルをタスク固有のデータで微調整し,音声強調,分離,合成に関する既存の専門家モデルに適合または超えることを示す。
論文 参考訳(メタデータ) (2023-10-25T03:40:50Z) - Generate to Understand for Representation [3.5325087487696463]
GURは、言語モデリングと対照的な学習目標を単一のトレーニングステップで組み合わせた事前トレーニングフレームワークである。
GURはラベル付きトレーニングデータなしで印象的な結果を実現し、ゼロショット設定でリコールベンチマークでレシーバーとして、トレーニング済みのすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2023-06-14T06:00:18Z) - What is the best recipe for character-level encoder-only modelling? [2.792030485253753]
本稿では,文字レベルで文脈化された表現を出力する言語理解モデルの最近の進歩をベンチマークすることを目的とする。
我々は,同一データ上で同じ設定でトレーニングされたトークンベースのモデルの性能より,最も優れたキャラクタレベルのモデルの方が優れていることを発見した。
本稿は,多言語表現のための文字レベルモデルの即興性を実証し,NLP実践者がトークンベースモデルのドロップイン代替として試すことを推奨するものである。
論文 参考訳(メタデータ) (2023-05-09T14:00:15Z) - Artificial Interrogation for Attributing Language Models [0.0]
この課題は、人気言語モデルの12のオープンソースベースバージョンと、テキスト生成のための12の微調整言語モデルを提供する。
コンテストの目標は、どのモデルがどのベースモデルに由来するかを特定することである。
両集合のモデルから生成された応答の類似性を測定するために4つの異なるアプローチを採用した。
論文 参考訳(メタデータ) (2022-11-20T05:46:29Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Quark: Controllable Text Generation with Reinforced Unlearning [68.07749519374089]
大規模言語モデルは、しばしばユーザの期待に合わない振る舞いを学ぶ。
本稿では,(不必要な)特性を定量化する報酬関数を最適化するアルゴリズムQuarkを紹介する。
未学習の毒性、ネガティブな感情、反復について、我々の実験はQuarkが強いベースラインと最先端の強化学習法の両方より優れていることを示している。
論文 参考訳(メタデータ) (2022-05-26T21:11:51Z) - Twist Decoding: Diverse Generators Guide Each Other [116.20780037268801]
様々なモデルの恩恵を受けながらテキストを生成するシンプルで一般的な推論アルゴリズムであるTwist decodingを導入する。
我々の方法は、語彙、トークン化、あるいは生成順序が共有されていると仮定しない。
論文 参考訳(メタデータ) (2022-05-19T01:27:53Z) - What Language Model Architecture and Pretraining Objective Work Best for
Zero-Shot Generalization? [50.84738303888189]
本稿では,モデル選択の大規模評価とそのゼロショット一般化への影響について述べる。
私たちは、70億以上のトークンに対して、50億以上のパラメータを持つモデルをトレーニングします。
事前学習した因果デコーダモデルを非因果デコーダモデルに効率的に適用できることが判明した。
論文 参考訳(メタデータ) (2022-04-12T14:19:49Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。