User Engagement in Mobile Health Applications
- URL: http://arxiv.org/abs/2206.08178v2
- Date: Thu, 23 Jun 2022 11:05:33 GMT
- Title: User Engagement in Mobile Health Applications
- Authors: Babaniyi Yusuf Olaniyi, Ana Fern\'andez del R\'io, \'Africa
Peri\'a\~nez and Lauren Bellhouse
- Abstract summary: Mobile health apps are revolutionizing the healthcare ecosystem by improving communication, efficiency, and quality of service.
In low- and middle-income countries, they also play a unique role as a source of information about health outcomes and behaviors of patients and healthcare workers.
We propose a framework to study user engagement with mobile health, focusing on healthcare workers and digital health apps designed to support them in resource-poor settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile health apps are revolutionizing the healthcare ecosystem by improving
communication, efficiency, and quality of service. In low- and middle-income
countries, they also play a unique role as a source of information about health
outcomes and behaviors of patients and healthcare workers, while providing a
suitable channel to deliver both personalized and collective policy
interventions. We propose a framework to study user engagement with mobile
health, focusing on healthcare workers and digital health apps designed to
support them in resource-poor settings. The behavioral logs produced by these
apps can be transformed into daily time series characterizing each user's
activity. We use probabilistic and survival analysis to build multiple
personalized measures of meaningful engagement, which could serve to tailor
content and digital interventions suiting each health worker's specific needs.
Special attention is given to the problem of detecting churn, understood as a
marker of complete disengagement. We discuss the application of our methods to
the Indian and Ethiopian users of the Safe Delivery App, a capacity-building
tool for skilled birth attendants. This work represents an important step
towards a full characterization of user engagement in mobile health
applications, which can significantly enhance the abilities of health workers
and, ultimately, save lives.
Related papers
- The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems [2.8351008282227266]
Mobile health has the potential to revolutionize health care delivery and patient engagement.
We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions.
The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations can significantly improve the impact of digital tools on health system outcomes.
arXiv Detail & Related papers (2024-09-24T13:52:15Z) - Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery [1.03590082373586]
The review highlights various types of mHealth applications used for remote monitoring, such as telemedicine platforms, mobile apps for chronic disease management, and wearable devices.
The benefits of these applications include improved patient outcomes, increased access to healthcare, reduced healthcare costs, and addressing healthcare disparities.
However, challenges and limitations, such as privacy and security concerns, lack of technical infrastructure, regulatory is-sues, data accuracy, user adherence, and the digital divide, need to be addressed.
arXiv Detail & Related papers (2024-08-26T11:32:43Z) - Optimizing HIV Patient Engagement with Reinforcement Learning in Resource-Limited Settings [2.619524972111665]
The CHARM app is an AI-native mobile app for community health workers (CHWs)
This paper details CHARM's development, integration, and upcoming reinforcement learning-based adaptive interventions.
arXiv Detail & Related papers (2024-08-14T15:55:31Z) - A Comprehensive Picture of Factors Affecting User Willingness to Use
Mobile Health Applications [62.60524178293434]
The aim of this paper is to investigate the factors that influence user acceptance of mHealth apps.
Users' digital literacy has the strongest impact on their willingness to use them, followed by their online habit of sharing personal information.
Users' demographic background, such as their country of residence, age, ethnicity, and education, has a significant moderating effect.
arXiv Detail & Related papers (2023-05-10T08:11:21Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Multi-task Learning for Personal Health Mention Detection on Social
Media [70.23889100356091]
This research employs a multitask learning framework to leverage available annotated data to improve the performance on the main task.
We focus on incorporating emotional information into our target task by using emotion detection as an auxiliary task.
arXiv Detail & Related papers (2022-12-09T23:49:00Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Using a Personal Health Library-Enabled mHealth Recommender System for
Self-Management of Diabetes Among Underserved Populations: Use Case for
Knowledge Graphs and Linked Data [0.11470070927586014]
This paper reports the implementation of a mobile health digital intervention that incorporates both digital health data stored in patients PHLs and other sources of contextual knowledge.
We describe the technological infrastructures used to construct, manage, and integrate the types of knowledge stored in the PHL.
The proposed PHL helps patients and their caregivers take a central role in making decisions regarding their health.
arXiv Detail & Related papers (2021-03-16T20:43:17Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.