Deep Learning Architecture for Automatic Essay Scoring
- URL: http://arxiv.org/abs/2206.08232v1
- Date: Thu, 16 Jun 2022 14:56:24 GMT
- Title: Deep Learning Architecture for Automatic Essay Scoring
- Authors: Tsegaye Misikir Tashu, Chandresh Kumar Maurya, Tomas Horvath
- Abstract summary: We propose a novel architecture based on recurrent networks (RNN) and convolution neural network (CNN)
In the proposed architecture, the multichannel convolutional layer learns and captures the contextual features of the word n-gram from the word embedding vectors.
Our proposed system achieves significantly higher grading accuracy than other deep learning-based AES systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic evaluation of essay (AES) and also called automatic essay scoring
has become a severe problem due to the rise of online learning and evaluation
platforms such as Coursera, Udemy, Khan academy, and so on. Researchers have
recently proposed many techniques for automatic evaluation. However, many of
these techniques use hand-crafted features and thus are limited from the
feature representation point of view. Deep learning has emerged as a new
paradigm in machine learning which can exploit the vast data and identify the
features useful for essay evaluation. To this end, we propose a novel
architecture based on recurrent networks (RNN) and convolution neural network
(CNN). In the proposed architecture, the multichannel convolutional layer
learns and captures the contextual features of the word n-gram from the word
embedding vectors and the essential semantic concepts to form the feature
vector at essay level using max-pooling operation. A variant of RNN called
Bi-gated recurrent unit (BGRU) is used to access both previous and subsequent
contextual representations. The experiment was carried out on eight data sets
available on Kaggle for the task of AES. The experimental results show that our
proposed system achieves significantly higher grading accuracy than other deep
learning-based AES systems and also other state-of-the-art AES systems.
Related papers
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - Class-Specific Semantic Reconstruction for Open Set Recognition [101.24781422480406]
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes.
We propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of auto-encoder (AE) and prototype learning.
Results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition.
arXiv Detail & Related papers (2022-07-05T16:25:34Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - Network Comparison Study of Deep Activation Feature Discriminability
with Novel Objects [0.5076419064097732]
State-of-the-art computer visions algorithms have incorporated Deep Neural Networks (DNN) in feature extracting roles, creating Deep Convolutional Activation Features (DeCAF)
This study analyzes the general discriminability of novel object visual appearances encoded into the DeCAF space of six of the leading visual recognition DNN architectures.
arXiv Detail & Related papers (2022-02-08T07:40:53Z) - Differentiable NAS Framework and Application to Ads CTR Prediction [30.74403362212425]
We implement an inference and modular framework for Differentiable Neural Architecture Search (DNAS)
We apply DNAS to the problem of ads click-through rate (CTR) prediction, arguably the highest-value and most worked on AI problem at hyperscalers today.
We develop and tailor novel search spaces to a Deep Learning Recommendation Model (DLRM) backbone for CTR prediction, and report state-of-the-art results on the Criteo Kaggle CTR prediction dataset.
arXiv Detail & Related papers (2021-10-25T05:46:27Z) - Applications of Recurrent Neural Network for Biometric Authentication &
Anomaly Detection [0.0]
Recurrent Neural Networks are powerful machine learning frameworks that allow for data to be saved and referenced in a temporal sequence.
This paper seeks to explore current research being conducted on RNNs in four very important areas, being biometric authentication, expression recognition, anomaly detection, and applications to aircraft.
arXiv Detail & Related papers (2021-09-13T04:37:18Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.