Contextual HyperNetworks for Novel Feature Adaptation
- URL: http://arxiv.org/abs/2104.05860v1
- Date: Mon, 12 Apr 2021 23:19:49 GMT
- Title: Contextual HyperNetworks for Novel Feature Adaptation
- Authors: Angus Lamb, Evgeny Saveliev, Yingzhen Li, Sebastian Tschiatschek,
Camilla Longden, Simon Woodhead, Jos\'e Miguel Hern\'andez-Lobato, Richard E.
Turner, Pashmina Cameron, Cheng Zhang
- Abstract summary: Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
- Score: 43.49619456740745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep learning has obtained state-of-the-art results in many
applications, the adaptation of neural network architectures to incorporate new
output features remains a challenge, as neural networks are commonly trained to
produce a fixed output dimension. This issue is particularly severe in online
learning settings, where new output features, such as items in a recommender
system, are added continually with few or no associated observations. As such,
methods for adapting neural networks to novel features which are both time and
data-efficient are desired. To address this, we propose the Contextual
HyperNetwork (CHN), an auxiliary model which generates parameters for extending
the base model to a new feature, by utilizing both existing data as well as any
observations and/or metadata associated with the new feature. At prediction
time, the CHN requires only a single forward pass through a neural network,
yielding a significant speed-up when compared to re-training and fine-tuning
approaches.
To assess the performance of CHNs, we use a CHN to augment a partial
variational autoencoder (P-VAE), a deep generative model which can impute the
values of missing features in sparsely-observed data. We show that this system
obtains improved few-shot learning performance for novel features over existing
imputation and meta-learning baselines across recommender systems, e-learning,
and healthcare tasks.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Supervised Feature Selection with Neuron Evolution in Sparse Neural
Networks [17.12834153477201]
We propose a novel resource-efficient supervised feature selection method using sparse neural networks.
By gradually pruning the uninformative features from the input layer of a sparse neural network trained from scratch, NeuroFS derives an informative subset of features efficiently.
NeuroFS achieves the highest ranking-based score among the considered state-of-the-art supervised feature selection models.
arXiv Detail & Related papers (2023-03-10T17:09:55Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - On the adaptation of recurrent neural networks for system identification [2.5234156040689237]
This paper presents a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network (RNN) models of dynamical systems.
The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.
To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime.
arXiv Detail & Related papers (2022-01-21T12:04:17Z) - Oscillatory Fourier Neural Network: A Compact and Efficient Architecture
for Sequential Processing [16.69710555668727]
We propose a novel neuron model that has cosine activation with a time varying component for sequential processing.
The proposed neuron provides an efficient building block for projecting sequential inputs into spectral domain.
Applying the proposed model to sentiment analysis on IMDB dataset reaches 89.4% test accuracy within 5 epochs.
arXiv Detail & Related papers (2021-09-14T19:08:07Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.