論文の概要: Switchable Representation Learning Framework with Self-compatibility
- arxiv url: http://arxiv.org/abs/2206.08289v1
- Date: Thu, 16 Jun 2022 16:46:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-17 14:01:46.872051
- Title: Switchable Representation Learning Framework with Self-compatibility
- Title(参考訳): 自己適合性を持つスイッチ可能な表現学習フレームワーク
- Authors: Shengsen Wu, Yan Bai, Yihang Lou, Xiongkun Linghu, Jianzhong He, Tao
Bai and Ling-Yu Duan
- Abstract要約: 自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 49.859737249098146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world visual search systems involve deployments on multiple platforms
with different computing and storage resources. Deploying a unified model that
suits the minimal-constrain platforms leads to limited accuracy. It is expected
to deploy models with different capacities adapting to the resource
constraints, which requires features extracted by these models to be aligned in
the metric space. The method to achieve feature alignments is called
"compatible learning". Existing research mainly focuses on the one-to-one
compatible paradigm, which is limited in learning compatibility among multiple
models. We propose a Switchable representation learning Framework with
Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models
with different capacities through one training process. The optimization of
sub-models faces gradients conflict, and we mitigate it from the perspective of
the magnitude and direction. We adjust the priorities of sub-models dynamically
through uncertainty estimation to co-optimize sub-models properly. Besides, the
gradients with conflicting directions are projected to avoid mutual
interference. SFSC achieves state-of-art performance on the evaluated dataset.
- Abstract(参考訳): 現実世界のビジュアル検索システムは、異なるコンピューティングとストレージリソースを持つ複数のプラットフォームに展開する。
最小制約プラットフォームに適合する統一モデルの導入は、精度の制限につながる。
リソース制約に応じて異なる能力を持つモデルをデプロイすることが期待されており、これらのモデルによって抽出された特徴を計量空間に整列させる必要がある。
特徴アライメントを実現する方法は「互換性のある学習」と呼ばれる。
既存の研究は主に、複数のモデル間の互換性の学習に制限のある、1対1の互換性パラダイムに焦点を当てている。
自己相似性(sfsc)を用いた表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
サブモデルの最適化は勾配の衝突に直面し、大きさと方向の観点から緩和する。
我々は不確実性推定によってサブモデルの優先順位を動的に調整し、サブモデルを適切に最適化する。
さらに、方向が矛盾する勾配は相互干渉を避けるために投影される。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
関連論文リスト
- Collective Model Intelligence Requires Compatible Specialization [29.590052023903457]
モデルが専門化するにつれて、特徴空間構造における類似性が減少し、集合的使用能力の妨げとなることを示す。
我々は、互換性のある特殊化と呼ばれるものを通して、集合モデルインテリジェンスを達成するための新しい方向を提案する。
論文 参考訳(メタデータ) (2024-11-04T15:59:16Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Training-Free Pretrained Model Merging [38.16269074353077]
双対空間制約(MuDSC)の下でのマージという,革新的なモデルマージフレームワークを提案する。
ユーザビリティを高めるため,マルチヘッドアテンションやグループ正規化など,グループ構造への適応も取り入れた。
論文 参考訳(メタデータ) (2024-03-04T06:19:27Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
一般的な事前訓練された大規模モデルから微調整されたマージングモデルは、様々なタスクに特化しているが、様々なタスクでうまく機能するマルチタスクモデルを構築するための安価でスケーラブルな戦略として実証されている。
本稿では、共通低次元部分空間を同定し、その共有情報トラック干渉問題を性能を犠牲にすることなく利用するための連続緩和(Concrete)部分空間学習法を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:24:54Z) - Decoupled Multi-task Learning with Cyclical Self-Regulation for Face
Parsing [71.19528222206088]
顔解析のための周期的自己統制型デカップリング型マルチタスク学習を提案する。
具体的には、DML-CSRは、顔解析、バイナリエッジ、カテゴリエッジ検出を含むマルチタスクモデルを設計する。
提案手法は,Helen,CelebA-HQ,LapaMaskのデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-28T02:12:30Z) - Learning from demonstration using products of experts: applications to
manipulation and task prioritization [12.378784643460474]
異なるタスク空間におけるモデルの融合は、専門家(PoE)の積として表現できることを示す。
複数の実験を行い、PoEフレームワークで異なるモデルを共同で学習することで、モデルの品質が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-10-07T16:24:41Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。