論文の概要: Switchable Representation Learning Framework with Self-compatibility
- arxiv url: http://arxiv.org/abs/2206.08289v4
- Date: Thu, 23 Mar 2023 10:54:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 18:36:53.952368
- Title: Switchable Representation Learning Framework with Self-compatibility
- Title(参考訳): 自己適合性を持つスイッチ可能な表現学習フレームワーク
- Authors: Shengsen Wu, Yan Bai, Yihang Lou, Xiongkun Linghu, Jianzhong He and
Ling-Yu Duan
- Abstract要約: 自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 50.48336074436792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world visual search systems involve deployments on multiple platforms
with different computing and storage resources. Deploying a unified model that
suits the minimal-constrain platforms leads to limited accuracy. It is expected
to deploy models with different capacities adapting to the resource
constraints, which requires features extracted by these models to be aligned in
the metric space. The method to achieve feature alignments is called
``compatible learning''. Existing research mainly focuses on the one-to-one
compatible paradigm, which is limited in learning compatibility among multiple
models. We propose a Switchable representation learning Framework with
Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models
with different capacities through one training process. The optimization of
sub-models faces gradients conflict, and we mitigate this problem from the
perspective of the magnitude and direction. We adjust the priorities of
sub-models dynamically through uncertainty estimation to co-optimize sub-models
properly. Besides, the gradients with conflicting directions are projected to
avoid mutual interference. SFSC achieves state-of-the-art performance on the
evaluated datasets.
- Abstract(参考訳): 現実世界のビジュアル検索システムは、異なるコンピューティングとストレージリソースを持つ複数のプラットフォームに展開する。
最小制約プラットフォームに適合する統一モデルの導入は、精度の制限につながる。
リソース制約に応じて異なる能力を持つモデルをデプロイすることが期待されており、これらのモデルによって抽出された特徴を計量空間に整列させる必要がある。
機能アライメントを実現する方法は ``compatible learning''' と呼ばれる。
既存の研究は主に、複数のモデル間の互換性の学習に制限のある、1対1の互換性パラダイムに焦点を当てている。
自己相似性(sfsc)を用いた表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
サブモデルの最適化は勾配の衝突に直面しており、この問題を大きさと方向の観点から緩和する。
我々は不確実性推定によってサブモデルの優先順位を動的に調整し、サブモデルを適切に最適化する。
さらに、方向が矛盾する勾配は相互干渉を避けるために投影される。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
複数のエキスパートモデルをマージすることは、元のデータにアクセスせずにマルチタスク学習を実行するための有望なアプローチを提供する。
既存の手法は必然的にタスク固有の情報を破棄し、競合の原因となっているが、パフォーマンスには不可欠である。
我々の手法は従来の手法より一貫して優れており、視覚領域とNLP領域の両方において様々なアーキテクチャやタスクにまたがって最先端の結果が得られます。
論文 参考訳(メタデータ) (2025-01-02T12:45:21Z) - Collective Model Intelligence Requires Compatible Specialization [29.590052023903457]
モデルが専門化するにつれて、特徴空間構造における類似性が減少し、集合的使用能力の妨げとなることを示す。
我々は、互換性のある特殊化と呼ばれるものを通して、集合モデルインテリジェンスを達成するための新しい方向を提案する。
論文 参考訳(メタデータ) (2024-11-04T15:59:16Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。