Switchable Representation Learning Framework with Self-compatibility
- URL: http://arxiv.org/abs/2206.08289v4
- Date: Thu, 23 Mar 2023 10:54:32 GMT
- Title: Switchable Representation Learning Framework with Self-compatibility
- Authors: Shengsen Wu, Yan Bai, Yihang Lou, Xiongkun Linghu, Jianzhong He and
Ling-Yu Duan
- Abstract summary: We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
- Score: 50.48336074436792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world visual search systems involve deployments on multiple platforms
with different computing and storage resources. Deploying a unified model that
suits the minimal-constrain platforms leads to limited accuracy. It is expected
to deploy models with different capacities adapting to the resource
constraints, which requires features extracted by these models to be aligned in
the metric space. The method to achieve feature alignments is called
``compatible learning''. Existing research mainly focuses on the one-to-one
compatible paradigm, which is limited in learning compatibility among multiple
models. We propose a Switchable representation learning Framework with
Self-Compatibility (SFSC). SFSC generates a series of compatible sub-models
with different capacities through one training process. The optimization of
sub-models faces gradients conflict, and we mitigate this problem from the
perspective of the magnitude and direction. We adjust the priorities of
sub-models dynamically through uncertainty estimation to co-optimize sub-models
properly. Besides, the gradients with conflicting directions are projected to
avoid mutual interference. SFSC achieves state-of-the-art performance on the
evaluated datasets.
Related papers
- Collective Model Intelligence Requires Compatible Specialization [29.590052023903457]
We show that as models specialize, the similarity in their feature space structure diminishes, hindering their capacity for collective use.
We propose a new direction for achieving collective model intelligence through what we call compatible specialization.
arXiv Detail & Related papers (2024-11-04T15:59:16Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Training-Free Pretrained Model Merging [38.16269074353077]
We propose an innovative model merging framework, coined as merging under dual-space constraints (MuDSC)
In order to enhance usability, we have also incorporated adaptations for group structure, including Multi-Head Attention and Group Normalization.
arXiv Detail & Related papers (2024-03-04T06:19:27Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Decoupled Multi-task Learning with Cyclical Self-Regulation for Face
Parsing [71.19528222206088]
We propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation for face parsing.
Specifically, DML-CSR designs a multi-task model which comprises face parsing, binary edge, and category edge detection.
Our method achieves the new state-of-the-art performance on the Helen, CelebA-HQ, and LapaMask datasets.
arXiv Detail & Related papers (2022-03-28T02:12:30Z) - Learning from demonstration using products of experts: applications to
manipulation and task prioritization [12.378784643460474]
We show that the fusion of models in different task spaces can be expressed as a product of experts (PoE)
Multiple experiments are presented to show that learning the different models jointly in the PoE framework significantly improves the quality of the model.
arXiv Detail & Related papers (2020-10-07T16:24:41Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.