Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging
- URL: http://arxiv.org/abs/2501.09522v1
- Date: Thu, 16 Jan 2025 13:17:24 GMT
- Title: Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging
- Authors: Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, Dacheng Tao,
- Abstract summary: Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
- Score: 75.93960998357812
- License:
- Abstract: Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their specialized capabilities across different tasks and domains. Current model merging techniques focus on merging all available models simultaneously, with weight interpolation-based methods being the predominant approaches. However, these conventional approaches are not well-suited for scenarios where models become available sequentially, and they often suffer from high memory requirements and potential interference between tasks. In this study, we propose a training-free projection-based continual merging method that processes models sequentially through orthogonal projections of weight matrices and adaptive scaling mechanisms. Our method operates by projecting new parameter updates onto subspaces orthogonal to existing merged parameter updates while using an adaptive scaling mechanism to maintain stable parameter distances, enabling efficient sequential integration of task-specific knowledge. Our approach maintains constant memory complexity to the number of models, minimizes interference between tasks through orthogonal projections, and retains the performance of previously merged models through adaptive task vector scaling. Extensive experiments on CLIP-ViT models demonstrate that our method achieves a 5-8% average accuracy improvement while maintaining robust performance in different task orderings.
Related papers
- Sens-Merging: Sensitivity-Guided Parameter Balancing for Merging Large Language Models [20.741460682103863]
Sens-Merging is a sensitivity-guided coefficient adjustment method for model merging.
We show that Sens-Merging significantly improves performance across general knowledge, mathematical reasoning, and code generation tasks.
Our findings reveal important trade-offs between task-specific and cross-task scalings, providing insights for future model merging strategies.
arXiv Detail & Related papers (2025-02-18T01:41:13Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - Parameter Competition Balancing for Model Merging [13.66727853299506]
PCB-Merging is a training-free technique that adjusts the coefficients of each parameter for effective model merging.
PCB-Merging achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models.
arXiv Detail & Related papers (2024-10-03T11:17:58Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks [12.146530928616386]
A common approach for targeted problems involves fine-tuning pre-trained foundation models for specific target tasks.
This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks.
We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model.
arXiv Detail & Related papers (2023-12-11T19:10:55Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z) - A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong
Reinforcement Learning [11.076005074172516]
reinforcement learning algorithms can easily encounter catastrophic forgetting or interference when faced with lifelong streaming information.
We propose a scalable lifelong RL method that dynamically expands the network capacity to accommodate new knowledge.
We show that our method successfully facilitates scalable lifelong RL and outperforms relevant existing methods.
arXiv Detail & Related papers (2022-05-22T09:48:41Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
We introduce a fundamentally different method for transferring knowledge across models that amounts to "merging" multiple models into one.
Our approach effectively involves computing a weighted average of the models' parameters.
We show that our merging procedure makes it possible to combine models in previously unexplored ways.
arXiv Detail & Related papers (2021-11-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.