Controllable 3D Face Synthesis with Conditional Generative Occupancy
Fields
- URL: http://arxiv.org/abs/2206.08361v1
- Date: Thu, 16 Jun 2022 17:58:42 GMT
- Title: Controllable 3D Face Synthesis with Conditional Generative Occupancy
Fields
- Authors: Keqiang Sun, Shangzhe Wu, Zhaoyang Huang, Ning Zhang, Quan Wang,
HongSheng Li
- Abstract summary: We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF) that effectively enforces the shape of the generated face to commit to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method, which is able to generate high-fidelity face images.
- Score: 40.2714783162419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capitalizing on the recent advances in image generation models, existing
controllable face image synthesis methods are able to generate high-fidelity
images with some levels of controllability, e.g., controlling the shapes,
expressions, textures, and poses of the generated face images. However, these
methods focus on 2D image generative models, which are prone to producing
inconsistent face images under large expression and pose changes. In this
paper, we propose a new NeRF-based conditional 3D face synthesis framework,
which enables 3D controllability over the generated face images by imposing
explicit 3D conditions from 3D face priors. At its core is a conditional
Generative Occupancy Field (cGOF) that effectively enforces the shape of the
generated face to commit to a given 3D Morphable Model (3DMM) mesh. To achieve
accurate control over fine-grained 3D face shapes of the synthesized image, we
additionally incorporate a 3D landmark loss as well as a volume warping loss
into our synthesis algorithm. Experiments validate the effectiveness of the
proposed method, which is able to generate high-fidelity face images and shows
more precise 3D controllability than state-of-the-art 2D-based controllable
face synthesis methods. Find code and demo at
https://keqiangsun.github.io/projects/cgof.
Related papers
- Controllable 3D Face Generation with Conditional Style Code Diffusion [51.24656496304069]
TEx-Face(TExt & Expression-to-Face) addresses challenges by dividing the task into three components, i.e., 3D GAN Inversion, Conditional Style Code Diffusion, and 3D Face Decoding.
Experiments conducted on FFHQ, CelebA-HQ, and CelebA-Dialog demonstrate the promising performance of our TEx-Face.
arXiv Detail & Related papers (2023-12-21T15:32:49Z) - Fake It Without Making It: Conditioned Face Generation for Accurate 3D
Face Reconstruction [5.079602839359523]
We present a method to generate a large-scale synthesised dataset of 250K photorealistic images and their corresponding shape parameters and depth maps, which we call SynthFace.
Our synthesis method conditions Stable Diffusion on depth maps sampled from the FLAME 3D Morphable Model (3DMM) of the human face, allowing us to generate a diverse set of shape-consistent facial images that is designed to be balanced in race and gender.
We propose ControlFace, a deep neural network, trained on SynthFace, which achieves competitive performance on the NoW benchmark, without requiring 3D supervision or manual 3D asset creation.
arXiv Detail & Related papers (2023-07-25T16:42:06Z) - Towards Realistic Generative 3D Face Models [41.574628821637944]
This paper proposes a 3D controllable generative face model to produce high-quality albedo and precise 3D shape.
By combining 2D face generative models with semantic face manipulation, this method enables editing of detailed 3D rendered faces.
arXiv Detail & Related papers (2023-04-24T22:47:52Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method and show more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.
arXiv Detail & Related papers (2022-11-23T19:02:50Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Controllable 3D Generative Adversarial Face Model via Disentangling
Shape and Appearance [63.13801759915835]
3D face modeling has been an active area of research in computer vision and computer graphics.
This paper proposes a new 3D face generative model that can decouple identity and expression.
arXiv Detail & Related papers (2022-08-30T13:40:48Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
We propose an unsupervised approach for one-shot 3D facial texture completion.
The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator.
We frontalize the target image by projecting the completed texture into the generator.
arXiv Detail & Related papers (2020-12-30T23:53:26Z) - Convolutional Generation of Textured 3D Meshes [34.20939983046376]
We propose a framework that can generate triangle meshes and associated high-resolution texture maps, using only 2D supervision from single-view natural images.
A key contribution of our work is the encoding of the mesh and texture as 2D representations, which are semantically aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where the model is conditioned on class labels, attributes, and text.
arXiv Detail & Related papers (2020-06-13T15:23:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.