Fake It Without Making It: Conditioned Face Generation for Accurate 3D
Face Reconstruction
- URL: http://arxiv.org/abs/2307.13639v2
- Date: Wed, 8 Nov 2023 14:52:29 GMT
- Title: Fake It Without Making It: Conditioned Face Generation for Accurate 3D
Face Reconstruction
- Authors: Will Rowan, Patrik Huber, Nick Pears, Andrew Keeling
- Abstract summary: We present a method to generate a large-scale synthesised dataset of 250K photorealistic images and their corresponding shape parameters and depth maps, which we call SynthFace.
Our synthesis method conditions Stable Diffusion on depth maps sampled from the FLAME 3D Morphable Model (3DMM) of the human face, allowing us to generate a diverse set of shape-consistent facial images that is designed to be balanced in race and gender.
We propose ControlFace, a deep neural network, trained on SynthFace, which achieves competitive performance on the NoW benchmark, without requiring 3D supervision or manual 3D asset creation.
- Score: 5.079602839359523
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate 3D face reconstruction from 2D images is an enabling technology with
applications in healthcare, security, and creative industries. However, current
state-of-the-art methods either rely on supervised training with very limited
3D data or self-supervised training with 2D image data. To bridge this gap, we
present a method to generate a large-scale synthesised dataset of 250K
photorealistic images and their corresponding shape parameters and depth maps,
which we call SynthFace. Our synthesis method conditions Stable Diffusion on
depth maps sampled from the FLAME 3D Morphable Model (3DMM) of the human face,
allowing us to generate a diverse set of shape-consistent facial images that is
designed to be balanced in race and gender. We further propose ControlFace, a
deep neural network, trained on SynthFace, which achieves competitive
performance on the NoW benchmark, without requiring 3D supervision or manual 3D
asset creation. The complete SynthFace dataset will be made publicly available
upon publication.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - Towards Realistic Generative 3D Face Models [41.574628821637944]
This paper proposes a 3D controllable generative face model to produce high-quality albedo and precise 3D shape.
By combining 2D face generative models with semantic face manipulation, this method enables editing of detailed 3D rendered faces.
arXiv Detail & Related papers (2023-04-24T22:47:52Z) - RAFaRe: Learning Robust and Accurate Non-parametric 3D Face
Reconstruction from Pseudo 2D&3D Pairs [13.11105614044699]
We propose a robust and accurate non-parametric method for single-view 3D face reconstruction (SVFR)
A large-scale pseudo 2D&3D dataset is created by first rendering the detailed 3D faces, then swapping the face in the wild images with the rendered face.
Our model outperforms previous methods on FaceScape-wild/lab and MICC benchmarks.
arXiv Detail & Related papers (2023-02-10T19:40:26Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - Generating 2D and 3D Master Faces for Dictionary Attacks with a
Network-Assisted Latent Space Evolution [68.8204255655161]
A master face is a face image that passes face-based identity authentication for a high percentage of the population.
We optimize these faces for 2D and 3D face verification models.
In 3D, we generate faces using the 2D StyleGAN2 generator and predict a 3D structure using a deep 3D face reconstruction network.
arXiv Detail & Related papers (2022-11-25T09:15:38Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method and show more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.
arXiv Detail & Related papers (2022-11-23T19:02:50Z) - Controllable 3D Face Synthesis with Conditional Generative Occupancy
Fields [40.2714783162419]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF) that effectively enforces the shape of the generated face to commit to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method, which is able to generate high-fidelity face images.
arXiv Detail & Related papers (2022-06-16T17:58:42Z) - OSTeC: One-Shot Texture Completion [86.23018402732748]
We propose an unsupervised approach for one-shot 3D facial texture completion.
The proposed approach rotates an input image in 3D and fill-in the unseen regions by reconstructing the rotated image in a 2D face generator.
We frontalize the target image by projecting the completed texture into the generator.
arXiv Detail & Related papers (2020-12-30T23:53:26Z) - DeepFaceFlow: In-the-wild Dense 3D Facial Motion Estimation [56.56575063461169]
DeepFaceFlow is a robust, fast, and highly-accurate framework for the estimation of 3D non-rigid facial flow.
Our framework was trained and tested on two very large-scale facial video datasets.
Given registered pairs of images, our framework generates 3D flow maps at 60 fps.
arXiv Detail & Related papers (2020-05-14T23:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.