Generalised Bayesian Inference for Discrete Intractable Likelihood
- URL: http://arxiv.org/abs/2206.08420v2
- Date: Fri, 1 Sep 2023 09:57:04 GMT
- Title: Generalised Bayesian Inference for Discrete Intractable Likelihood
- Authors: Takuo Matsubara, Jeremias Knoblauch, Fran\c{c}ois-Xavier Briol, Chris.
J. Oates
- Abstract summary: This paper develops a novel generalised Bayesian inference procedure suitable for discrete intractable likelihood.
Inspired by recent methodological advances for continuous data, the main idea is to update beliefs about model parameters using a discrete Fisher divergence.
The result is a generalised posterior that can be sampled from using standard computational tools, such as Markov Monte Carlo.
- Score: 9.331721990371769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discrete state spaces represent a major computational challenge to
statistical inference, since the computation of normalisation constants
requires summation over large or possibly infinite sets, which can be
impractical. This paper addresses this computational challenge through the
development of a novel generalised Bayesian inference procedure suitable for
discrete intractable likelihood. Inspired by recent methodological advances for
continuous data, the main idea is to update beliefs about model parameters
using a discrete Fisher divergence, in lieu of the problematic intractable
likelihood. The result is a generalised posterior that can be sampled from
using standard computational tools, such as Markov chain Monte Carlo,
circumventing the intractable normalising constant. The statistical properties
of the generalised posterior are analysed, with sufficient conditions for
posterior consistency and asymptotic normality established. In addition, a
novel and general approach to calibration of generalised posteriors is
proposed. Applications are presented on lattice models for discrete spatial
data and on multivariate models for count data, where in each case the
methodology facilitates generalised Bayesian inference at low computational
cost.
Related papers
- Generalized Laplace Approximation [23.185126261153236]
We introduce a unified theoretical framework to attribute Bayesian inconsistency to model misspecification and inadequate priors.
We propose the generalized Laplace approximation, which involves a simple adjustment to the Hessian matrix of the regularized loss function.
We assess the performance and properties of the generalized Laplace approximation on state-of-the-art neural networks and real-world datasets.
arXiv Detail & Related papers (2024-05-22T11:11:42Z) - Online Identification of Stochastic Continuous-Time Wiener Models Using
Sampled Data [4.037738063437126]
We develop an online estimation algorithm based on an output-error predictor for the identification of continuous-time Wiener models.
The method is robust with respect to the assumptions on the spectrum of the disturbance process.
arXiv Detail & Related papers (2024-03-09T12:33:09Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Robust Generalised Bayesian Inference for Intractable Likelihoods [9.77823546576708]
We consider generalised Bayesian inference with a Stein discrepancy as a loss function.
This is motivated by applications in which the likelihood contains an intractable normalisation constant.
We show consistency, normality and bias-robustness of the posterior, highlighting how these properties are impacted by the choice of Stein discrepancy.
arXiv Detail & Related papers (2021-04-15T10:31:22Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
We provide conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the logistical optima.
In particular, we establish local variation of the algorithm without any assumptions on the data-generating process.
We explore a special case involving a semi-orthogonal design under which a global convergence is obtained.
arXiv Detail & Related papers (2020-10-25T05:15:13Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.