Online Identification of Stochastic Continuous-Time Wiener Models Using
Sampled Data
- URL: http://arxiv.org/abs/2403.05899v1
- Date: Sat, 9 Mar 2024 12:33:09 GMT
- Title: Online Identification of Stochastic Continuous-Time Wiener Models Using
Sampled Data
- Authors: Mohamed Abdalmoaty, Efe C. Balta, John Lygeros, Roy S. Smith
- Abstract summary: We develop an online estimation algorithm based on an output-error predictor for the identification of continuous-time Wiener models.
The method is robust with respect to the assumptions on the spectrum of the disturbance process.
- Score: 4.037738063437126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well known that ignoring the presence of stochastic disturbances in the
identification of stochastic Wiener models leads to asymptotically biased
estimators. On the other hand, optimal statistical identification, via
likelihood-based methods, is sensitive to the assumptions on the data
distribution and is usually based on relatively complex sequential Monte Carlo
algorithms. We develop a simple recursive online estimation algorithm based on
an output-error predictor, for the identification of continuous-time stochastic
parametric Wiener models through stochastic approximation. The method is
applicable to generic model parameterizations and, as demonstrated in the
numerical simulation examples, it is robust with respect to the assumptions on
the spectrum of the disturbance process.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Fast Estimation of Bayesian State Space Models Using Amortized
Simulation-Based Inference [0.0]
This paper presents a fast algorithm for estimating hidden states of Bayesian state space models.
After pretraining, finding the posterior distribution for any dataset takes from hundredths to tenths of a second.
arXiv Detail & Related papers (2022-10-13T16:37:05Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Generalised Bayesian Inference for Discrete Intractable Likelihood [9.331721990371769]
This paper develops a novel generalised Bayesian inference procedure suitable for discrete intractable likelihood.
Inspired by recent methodological advances for continuous data, the main idea is to update beliefs about model parameters using a discrete Fisher divergence.
The result is a generalised posterior that can be sampled from using standard computational tools, such as Markov Monte Carlo.
arXiv Detail & Related papers (2022-06-16T19:36:17Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
We propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach.
The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes.
arXiv Detail & Related papers (2022-05-18T09:03:00Z) - Probabilistic Estimation of Chirp Instantaneous Frequency Using Gaussian
Processes [4.150253997298207]
We present a probabilistic approach for estimating signal and its instantaneous frequency function when the true forms of the chirp and instantaneous frequency are unknown.
Experiments show that the method outperforms a number of baseline methods on a synthetic model, and we also apply it to analyse a gravitational wave data.
arXiv Detail & Related papers (2022-05-12T18:47:13Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - New Algorithms And Fast Implementations To Approximate Stochastic
Processes [0.0]
We present new algorithms and fast implementations to find efficient approximations for modelling processes.
The goal is always to find a finite model, which represents a given knowledge about the real data process as accurate as possible.
arXiv Detail & Related papers (2020-12-01T06:14:16Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.