論文の概要: I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences
- arxiv url: http://arxiv.org/abs/2206.08451v2
- Date: Tue, 6 Jun 2023 09:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 23:51:09.868868
- Title: I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences
- Title(参考訳): 去年の夏に学んだこと: 機械学習モデルと防御のステアリングに関する調査
- Authors: Daryna Oliynyk, Rudolf Mayer, Andreas Rauber
- Abstract要約: 本研究では,モデル盗難攻撃について検討し,その性能を評価し,異なる環境で対応する防御技術を探究する。
攻撃・防衛アプローチのための分類法を提案し,目標と利用可能な資源に基づいて適切な攻撃・防衛を選択する方法に関するガイドラインを提供する。
- 参考スコア(独自算出の注目度): 0.1031296820074812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning-as-a-Service (MLaaS) has become a widespread paradigm,
making even the most complex machine learning models available for clients via
e.g. a pay-per-query principle. This allows users to avoid time-consuming
processes of data collection, hyperparameter tuning, and model training.
However, by giving their customers access to the (predictions of their) models,
MLaaS providers endanger their intellectual property, such as sensitive
training data, optimised hyperparameters, or learned model parameters.
Adversaries can create a copy of the model with (almost) identical behavior
using the the prediction labels only. While many variants of this attack have
been described, only scattered defence strategies have been proposed,
addressing isolated threats. This raises the necessity for a thorough
systematisation of the field of model stealing, to arrive at a comprehensive
understanding why these attacks are successful, and how they could be
holistically defended against. We address this by categorising and comparing
model stealing attacks, assessing their performance, and exploring
corresponding defence techniques in different settings. We propose a taxonomy
for attack and defence approaches, and provide guidelines on how to select the
right attack or defence strategy based on the goal and available resources.
Finally, we analyse which defences are rendered less effective by current
attack strategies.
- Abstract(参考訳): マシンラーニング・アズ・ア・サービス(MLaaS)は広く普及し、例えばペイ・パー・クエリの原則を通じて、クライアントが利用できる最も複雑な機械学習モデルさえも実現している。
これにより、データ収集、ハイパーパラメータチューニング、モデルのトレーニングといった時間のかかるプロセスを避けることができる。
しかしながら、顧客に対して(予測)モデルへのアクセスを与えることで、mlaasプロバイダは、センシティブなトレーニングデータ、最適化されたハイパーパラメータ、学習したモデルパラメータなどの知的財産を危険にさらす。
敵は予測ラベルのみを使用して(ほぼ)同一の振る舞いを持つモデルのコピーを作成することができる。
この攻撃の多くの変種が説明されているが、孤立した脅威に対処する散在する防衛戦略のみが提案されている。
これにより、モデル盗みの分野の徹底した体系化の必要性が高まり、これらの攻撃がなぜ成功したのか、どのように集団的に防御されるのかを包括的に理解する必要がある。
我々は,モデル盗み攻撃を分類・比較し,その性能を評価し,異なる環境で対応する防御手法を検討することで対処する。
攻撃・防衛アプローチのための分類法を提案し,目標と利用可能な資源に基づいて適切な攻撃・防衛戦略を選択するためのガイドラインを提供する。
最後に、現在の攻撃戦略による防御効果の低下について分析する。
関連論文リスト
- Defense Against Model Extraction Attacks on Recommender Systems [53.127820987326295]
本稿では、モデル抽出攻撃に対するリコメンデータシステムに対する防御のために、グラディエントベースのランキング最適化(GRO)を導入する。
GROは、攻撃者の代理モデルの損失を最大化しながら、保護対象モデルの損失を最小限にすることを目的としている。
その結果,モデル抽出攻撃に対するGROの防御効果は良好であった。
論文 参考訳(メタデータ) (2023-10-25T03:30:42Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Target Model Agnostic Adversarial Attacks with Query Budgets on Language
Understanding Models [14.738950386902518]
攻撃対象モデルに対して高い攻撃伝達性を有する目標モデル逆攻撃法を提案する。
実験により,本手法は,限られたクエリ予算の制約の下で,高度に伝達可能な文を生成することを示す。
論文 参考訳(メタデータ) (2021-06-13T17:18:19Z) - Adversarial Poisoning Attacks and Defense for General Multi-Class Models
Based On Synthetic Reduced Nearest Neighbors [14.968442560499753]
最先端の機械学習モデルは、データ中毒攻撃に弱い。
本論文では,データのマルチモダリティに基づく新しいモデルフリーラベルフリップ攻撃を提案する。
第二に、SRNN(Synthetic reduced Nearest Neighbor)モデルに基づく新しい防御技術を提案する。
論文 参考訳(メタデータ) (2021-02-11T06:55:40Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
自動運転車やML-as-a-serviceのような生産システムでさえ、逆の入力の影響を受けやすい。
摂動入力は、攻撃を生成するために使われるメソッドに起因できるだろうか?
敵対攻撃属性の概念を導入し、敵対攻撃における攻撃可能信号の発見可能性を調べるための単純な教師付き学習実験フレームワークを作成する。
論文 参考訳(メタデータ) (2021-01-08T08:16:41Z) - Omni: Automated Ensemble with Unexpected Models against Adversarial
Evasion Attack [35.0689225703137]
機械学習に基づくセキュリティ検出モデルは、敵の回避攻撃の影響を受けやすい。
我々はオムニ(Omni)と呼ばれる手法を提案し、「予期せぬモデル」のアンサンブルを作成する方法を探る。
5種類の敵対的回避攻撃による研究において,オムニは防衛戦略として有望なアプローチであることを示す。
論文 参考訳(メタデータ) (2020-11-23T20:02:40Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Improving Robustness to Model Inversion Attacks via Mutual Information
Regularization [12.079281416410227]
本稿では,モデル逆転攻撃に対する防御機構について検討する。
MIは、ターゲット機械学習モデルへのアクセスからトレーニングデータ配布に関する情報を推測することを目的とした、プライバシ攻撃の一種である。
我々はMI攻撃に対するMID(Multual Information Regularization based Defense)を提案する。
論文 参考訳(メタデータ) (2020-09-11T06:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。