A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features
- URL: http://arxiv.org/abs/2206.08473v1
- Date: Thu, 16 Jun 2022 22:46:33 GMT
- Title: A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features
- Authors: Jiuhai Chen, Jonas Mueller, Vassilis N. Ioannidis, Tom Goldstein,
David Wipf
- Abstract summary: Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
- Score: 61.92791503017341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) with numerical node features and graph structure
as inputs have demonstrated superior performance on various supervised learning
tasks with graph data. However the numerical node features utilized by GNNs are
commonly extracted from raw data which is of text or tabular
(numeric/categorical) type in most real-world applications. The best models for
such data types in most standard supervised learning settings with IID
(non-graph) data are not simple neural network layers and thus are not easily
incorporated into a GNN. Here we propose a robust stacking framework that fuses
graph-aware propagation with arbitrary models intended for IID data, which are
ensembled and stacked in multiple layers. Our layer-wise framework leverages
bagging and stacking strategies to enjoy strong generalization, in a manner
which effectively mitigates label leakage and overfitting. Across a variety of
graph datasets with tabular/text node features, our method achieves comparable
or superior performance relative to both tabular/text and graph neural network
models, as well as existing state-of-the-art hybrid strategies that combine the
two.
Related papers
- DA-MoE: Addressing Depth-Sensitivity in Graph-Level Analysis through Mixture of Experts [70.21017141742763]
Graph neural networks (GNNs) are gaining popularity for processing graph-structured data.
Existing methods generally use a fixed number of GNN layers to generate representations for all graphs.
We propose the depth adaptive mixture of expert (DA-MoE) method, which incorporates two main improvements to GNN.
arXiv Detail & Related papers (2024-11-05T11:46:27Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
We decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance.
We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models.
arXiv Detail & Related papers (2021-11-12T14:53:22Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
Graph Neural Networks (GNNs) compute node representations by taking into account the topology of the node's ego-network and the features of the ego-network's nodes.
When the nodes do not have high-quality features, GNNs learn an embedding layer to compute node embeddings and use them as input features.
To reduce the memory associated with this embedding layer, hashing-based approaches, commonly used in applications like NLP and recommender systems, can potentially be used.
We present approaches that take advantage of the nodes' position in the graph to dramatically reduce the memory required.
arXiv Detail & Related papers (2021-08-31T22:42:25Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.