Picotesla magnetometry of microwave fields with diamond sensors
- URL: http://arxiv.org/abs/2206.08533v2
- Date: Thu, 11 Aug 2022 07:04:11 GMT
- Title: Picotesla magnetometry of microwave fields with diamond sensors
- Authors: Zhecheng Wang, Fei Kong, Pengju Zhao, Zhehuang Huang, Pei Yu, Ya Wang,
Fazhan Shi, Jiangfeng Du
- Abstract summary: Nitrogen-Vacancy (NV) center in diamond is an attractive candidate for such purpose.
Existing NV center-based magnetometers have limited sensitivity in the microwave band.
We present a continuous heterodyne detection method that can enhance the sensor's response to weak microwaves.
- Score: 10.513633393682966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing robust microwave-field sensors is both fundamentally and
practically important with a wide range of applications from astronomy to
communication engineering. The Nitrogen-Vacancy (NV) center in diamond is an
attractive candidate for such purpose because of its magnetometric sensitivity,
stability and compatibility with ambient conditions. However, the existing NV
center-based magnetometers have limited sensitivity in the microwave band. Here
we present a continuous heterodyne detection method that can enhance the
sensor's response to weak microwaves, even in the absence of spin controls.
Experimentally, we achieve a sensitivity of 8.9 pT$\cdot$Hz$^{-1/2}$ for
microwaves of 2.9 GHz by simultaneously using an ensemble of $n_{\text{NV}}
\sim 2.8\times10^{13}$ NV centers within a sensor volume of $4\times10^{-2}$
mm$^3$. Besides, we also achieve $1/t$ scaling of frequency resolution up to
measurement time $t$ of 10000 s. Our method removes the control pulses and thus
will greatly benefit the practical application of diamond-based microwave
sensors.
Related papers
- A miniaturized magnetic field sensor based on nitrogen-vacancy centers [0.0]
The nitrogen-vacancy center in diamond is a prime candidate for quantum sensing technologies.
We present a fully integrated mechanically robust fiber-based endoscopic sensor capable of $5.9,mathrmnT/ sqrtmathrmHz$ magnetic field sensitivity.
We demonstrate the capability of vector magnetic field measurements in a magnetic field as used in state-of-the-art ultracold quantum gas experiments.
arXiv Detail & Related papers (2024-02-29T17:20:13Z) - Demonstration of highly-sensitive wideband microwave sensing using
ensemble nitrogen-vacancy centers [0.0]
We demonstrate a broadband microwave sensing protocol using the AC Zeeman effect with ensemble nitrogen-vacancy centers in diamond.
A widefield microscope can visualize the frequency characteristics of the microwave resonator and the spatial distribution of off-resonant microwave amplitude.
arXiv Detail & Related papers (2023-11-26T05:26:28Z) - Diamond quantum magnetometer with dc sensitivity of < 10 pT Hz$^{-1/2}$
toward measurement of biomagnetic field [0.0]
We present a sensitive diamond quantum sensor with a magnetic field sensitivity of $9.4 pm 0.1mathrmpT/sqrtHz$ in a near-dc frequency range of 5 to 100Hz.
This sensor is based on the continuous-wave optically detected magnetic resonance of an ensemble of nitrogen-vacancy centers along the [111] direction in a diamond (111) single crystal.
arXiv Detail & Related papers (2023-09-08T03:12:32Z) - Variable bandwidth, high efficiency microwave resonator for control of
spin-qubits in nitrogen-vacancy centers [0.0]
Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information.
We present a planar microwave resonator optimized for microwave-optical double resonance experiments.
arXiv Detail & Related papers (2023-01-10T11:26:42Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - A Solid-State Microwave Magnetometer with Picotesla-Level Sensitivity [6.651249440652801]
Quantum sensing of low-frequency magnetic fields using nitrogen-vacancy (NV) center ensembles has been demonstrated in multiple experiments with sensitivities as low as $sim$1 pT/$sqrttextHz$.
Here we adapt for microwave frequencies techniques that have enabled high-performance, low-frequency quantum sensors.
We demonstrate a Rabi-sequence-based magnetometer able to detect microwave fields near 2.87 GHz with a record sensitivity of 3.4 pT/$sqrttextrmHz$.
arXiv Detail & Related papers (2022-06-30T17:33:02Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Optimisation of a diamond nitrogen vacancy centre magnetometer for
sensing of biological signals [44.62475518267084]
We present advances in biomagnetometry using nitrogen vacancy centres in diamond.
We show magnetic field sensitivity of approximately 100 pT/$sqrtHz$ in the DC/low frequency range using a setup designed for biological measurements.
arXiv Detail & Related papers (2020-04-05T18:44:34Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.