Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete
Sequential Data via Bayesian Optimization
- URL: http://arxiv.org/abs/2206.08575v1
- Date: Fri, 17 Jun 2022 06:11:36 GMT
- Title: Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete
Sequential Data via Bayesian Optimization
- Authors: Deokjae Lee, Seungyong Moon, Junhyeok Lee, Hyun Oh Song
- Abstract summary: We focus on the problem of adversarial attacks against models on discrete sequential data in the black-box setting.
We propose a query-efficient black-box attack using Bayesian optimization, which dynamically computes important positions.
We develop a post-optimization algorithm that finds adversarial examples with smaller perturbation size.
- Score: 10.246596695310176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the problem of adversarial attacks against models on discrete
sequential data in the black-box setting where the attacker aims to craft
adversarial examples with limited query access to the victim model. Existing
black-box attacks, mostly based on greedy algorithms, find adversarial examples
using pre-computed key positions to perturb, which severely limits the search
space and might result in suboptimal solutions. To this end, we propose a
query-efficient black-box attack using Bayesian optimization, which dynamically
computes important positions using an automatic relevance determination (ARD)
categorical kernel. We introduce block decomposition and history subsampling
techniques to improve the scalability of Bayesian optimization when an input
sequence becomes long. Moreover, we develop a post-optimization algorithm that
finds adversarial examples with smaller perturbation size. Experiments on
natural language and protein classification tasks demonstrate that our method
consistently achieves higher attack success rate with significant reduction in
query count and modification rate compared to the previous state-of-the-art
methods.
Related papers
- Efficient Black-box Adversarial Attacks via Bayesian Optimization Guided by a Function Prior [36.101904669291436]
This paper studies the challenging black-box adversarial attack that aims to generate examples against a black-box model by only using output feedback of the model to input queries.
We propose a Prior-guided Bayesian Optimization (P-BO) algorithm that leverages the surrogate model as a global function prior in black-box adversarial attacks.
Our theoretical analysis on the regret bound indicates that the performance of P-BO may be affected by a bad prior.
arXiv Detail & Related papers (2024-05-29T14:05:16Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
Black-box adversarial attacks present a realistic threat to action recognition systems.
We propose a new attack on action recognition that addresses these shortcomings by generating perturbations.
Our method achieves 8% and higher 12% deception rates compared to state-of-the-art query-based and transfer-based attacks.
arXiv Detail & Related papers (2022-11-23T17:47:49Z) - Defending Substitution-Based Profile Pollution Attacks on Sequential
Recommenders [8.828396559882954]
We propose a substitution-based adversarial attack algorithm, which modifies the input sequence by selecting certain vulnerable elements and substituting them with adversarial items.
We also design an efficient adversarial defense method called Dirichlet neighborhood sampling.
In particular, we represent selected items with one-hot encodings and perform gradient ascent on the encodings to search for the worst case linear combination of item embeddings in training.
arXiv Detail & Related papers (2022-07-19T00:19:13Z) - Proximal Splitting Adversarial Attacks for Semantic Segmentation [33.53113858999438]
We show that a whitebox attack can fool adversarial segmentation models based on proximal Lagrangian norms.
Our attack significantly outperforms previously proposed ones, as well as classification attacks that we adapted for segmentation.
arXiv Detail & Related papers (2022-06-14T21:23:02Z) - Automated Decision-based Adversarial Attacks [48.01183253407982]
We consider the practical and challenging decision-based black-box adversarial setting.
Under this setting, the attacker can only acquire the final classification labels by querying the target model.
We propose to automatically discover decision-based adversarial attack algorithms.
arXiv Detail & Related papers (2021-05-09T13:15:10Z) - Practical Relative Order Attack in Deep Ranking [99.332629807873]
We formulate a new adversarial attack against deep ranking systems, i.e., the Order Attack.
The Order Attack covertly alters the relative order among a selected set of candidates according to an attacker-specified permutation.
It is successfully implemented on a major e-commerce platform.
arXiv Detail & Related papers (2021-03-09T06:41:18Z) - Local Black-box Adversarial Attacks: A Query Efficient Approach [64.98246858117476]
Adrial attacks have threatened the application of deep neural networks in security-sensitive scenarios.
We propose a novel framework to perturb the discriminative areas of clean examples only within limited queries in black-box attacks.
We conduct extensive experiments to show that our framework can significantly improve the query efficiency during black-box perturbing with a high attack success rate.
arXiv Detail & Related papers (2021-01-04T15:32:16Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z) - Projection & Probability-Driven Black-Box Attack [205.9923346080908]
Existing black-box attacks suffer from the need for excessive queries in the high-dimensional space.
We propose Projection & Probability-driven Black-box Attack (PPBA) to tackle this problem.
Our method requires at most 24% fewer queries with a higher attack success rate compared with state-of-the-art approaches.
arXiv Detail & Related papers (2020-05-08T03:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.