論文の概要: Assessing transportation accessibility equity via open data
- arxiv url: http://arxiv.org/abs/2206.09037v1
- Date: Fri, 17 Jun 2022 22:31:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 17:50:32.228176
- Title: Assessing transportation accessibility equity via open data
- Title(参考訳): オープンデータによる交通アクセス性評価
- Authors: Amirhesam Badeanlou and Andrea Araldo and Marco Diana
- Abstract要約: 首都圏における交通機関のアクセシビリティの不平等を評価する手法を提案する。
この斬新さは、世界中のいくつかの都市に簡単に自動で適用できるという事実に存在している。
- 参考スコア(独自算出の注目度): 0.34376560669160383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a methodology to assess transportation accessibility inequity in
metropolitan areas. The methodology is based on the classic analysis tools of
Lorenz curves and Gini indices, but the novelty resides in the fact that it can
be easily applied in an automated way to several cities around the World, with
no need for customized data treatment. Indeed, our equity metrics can be
computed solely relying on open data, publicly available in standardized form.
We showcase our method and study transp
- Abstract(参考訳): 首都圏における交通のアクセシビリティ不平等を評価する手法を提案する。
この手法は、ローレンツ曲線とジーニ指数の古典的な分析ツールに基づいているが、この斬新さは、カスタマイズされたデータ処理を必要とせず、世界中のいくつかの都市に簡単に自動で適用できるという事実に留まっている。
実際、当社のエクイティメトリクスは、標準化された形式で公開されているオープンデータのみに依存して計算することができます。
私たちはこの方法と研究用トランスップを紹介します
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Auditing Fairness by Betting [47.53732591434]
我々は,デプロイされた分類モデルと回帰モデルの公平性を評価するための,実用的で効率的で非パラメトリックな手法を提供する。
我々の手法は逐次的であり、入ってくるデータの継続的なモニタリングを可能にする。
提案手法の有効性を3つのベンチマークフェアネスデータセットに示す。
論文 参考訳(メタデータ) (2023-05-27T20:14:11Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - Interpretable Locally Adaptive Nearest Neighbors [8.052709336750821]
そこで我々は,局所的に適応的なメトリクスを学習する手法を開発した。
これらのローカルメトリクスはパフォーマンスを向上するだけでなく、自然に解釈できる。
合成データセットについて多数の実験を行い、実世界のベンチマークデータセットにその有用性を示す。
論文 参考訳(メタデータ) (2020-11-08T05:27:50Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z) - MapLUR: Exploring a new Paradigm for Estimating Air Pollution using Deep
Learning on Map Images [4.7791671364702575]
土地利用回帰モデルは, 計測ステーションのない地域での大気汚染濃度を評価する上で重要である。
我々は,オープンかつグローバルなデータのみを用いて,純粋にデータ駆動型アプローチに基づくモデルを実現する,データ駆動型オープングローバル(DOG)パラダイムを提案する。
論文 参考訳(メタデータ) (2020-02-18T11:21:55Z) - Street-level Travel-time Estimation via Aggregated Uber Data [2.838842554577539]
都市部における道路セグメントに沿った時間的パターンの推定は,交通技術者や都市計画者にとって重要な課題である。
本研究では,大都市圏の街路レベルの走行時間を推定するために,粗粒度および集約された走行時間データを活用する手法を提案する。
論文 参考訳(メタデータ) (2020-01-13T21:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。