Certified Graph Unlearning
- URL: http://arxiv.org/abs/2206.09140v1
- Date: Sat, 18 Jun 2022 07:41:10 GMT
- Title: Certified Graph Unlearning
- Authors: Eli Chien, Chao Pan, Olgica Milenkovic
- Abstract summary: Graph-structured data is ubiquitous in practice and often processed using graph neural networks (GNNs)
We introduce the first known framework for emph certified graph unlearning of GNNs.
Three different types of unlearning requests need to be considered, including node feature, edge and node unlearning.
- Score: 39.29148804411811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-structured data is ubiquitous in practice and often processed using
graph neural networks (GNNs). With the adoption of recent laws ensuring the
``right to be forgotten'', the problem of graph data removal has become of
significant importance. To address the problem, we introduce the first known
framework for \emph{certified graph unlearning} of GNNs. In contrast to
standard machine unlearning, new analytical and heuristic unlearning challenges
arise when dealing with complex graph data. First, three different types of
unlearning requests need to be considered, including node feature, edge and
node unlearning. Second, to establish provable performance guarantees, one
needs to address challenges associated with feature mixing during propagation.
The underlying analysis is illustrated on the example of simple graph
convolutions (SGC) and their generalized PageRank (GPR) extensions, thereby
laying the theoretical foundation for certified unlearning of GNNs. Our
empirical studies on six benchmark datasets demonstrate excellent
performance-complexity trade-offs when compared to complete retraining methods
and approaches that do not leverage graph information. For example, when
unlearning $20\%$ of the nodes on the Cora dataset, our approach suffers only a
$0.1\%$ loss in test accuracy while offering a $4$-fold speed-up compared to
complete retraining. Our scheme also outperforms unlearning methods that do not
leverage graph information with a $12\%$ increase in test accuracy for a
comparable time complexity.
Related papers
- Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
This paper investigates the application of curriculum learning techniques to improve the performance of Heterogeneous Graph Neural Networks (GNNs)
To better classify the quality of the data, we design a loss-aware training schedule, named LTS, that measures the quality of every nodes of the data.
Our findings demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities for analyzing complex graph-structured data.
arXiv Detail & Related papers (2024-02-29T05:44:41Z) - Two Heads Are Better Than One: Boosting Graph Sparse Training via
Semantic and Topological Awareness [80.87683145376305]
Graph Neural Networks (GNNs) excel in various graph learning tasks but face computational challenges when applied to large-scale graphs.
We propose Graph Sparse Training ( GST), which dynamically manipulates sparsity at the data level.
GST produces a sparse graph with maximum topological integrity and no performance degradation.
arXiv Detail & Related papers (2024-02-02T09:10:35Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Unlearning Graph Classifiers with Limited Data Resources [39.29148804411811]
Controlled data removal is becoming an important feature of machine learning models for data-sensitive Web applications.
It is still largely unknown how to perform efficient machine unlearning of graph neural networks (GNNs)
Our main contribution is the first known nonlinear approximate graph unlearning method based on GSTs.
Our second contribution is a theoretical analysis of the computational complexity of the proposed unlearning mechanism.
Our third contribution are extensive simulation results which show that, compared to complete retraining of GNNs after each removal request, the new GST-based approach offers, on average, a 10.38x speed-up
arXiv Detail & Related papers (2022-11-06T20:46:50Z) - Diving into Unified Data-Model Sparsity for Class-Imbalanced Graph
Representation Learning [30.23894624193583]
Graph Neural Networks (GNNs) training upon non-Euclidean graph data often encounters relatively higher time costs.
We develop a unified data-model dynamic sparsity framework named Graph Decantation (GraphDec) to address challenges brought by training upon a massive class-imbalanced graph data.
arXiv Detail & Related papers (2022-10-01T01:47:00Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
We show that for many standard transductive node classification benchmarks, we can exceed or match the performance of state-of-the-art GNNs.
We call this overall procedure Correct and Smooth (C&S)
Our approach exceeds or nearly matches the performance of state-of-the-art GNNs on a wide variety of benchmarks.
arXiv Detail & Related papers (2020-10-27T02:10:52Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.