Multi-Modality Image Super-Resolution using Generative Adversarial
Networks
- URL: http://arxiv.org/abs/2206.09193v2
- Date: Wed, 22 Jun 2022 15:27:35 GMT
- Title: Multi-Modality Image Super-Resolution using Generative Adversarial
Networks
- Authors: Aref Abedjooy, Mehran Ebrahimi
- Abstract summary: We propose a solution to the joint problem of image super-resolution and multi-modality image-to-image translation.
The problem can be stated as the recovery of a high-resolution image in a modality, given a low-resolution observation of the same image in an alternative modality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the past few years deep learning-based techniques such as Generative
Adversarial Networks (GANs) have significantly improved solutions to image
super-resolution and image-to-image translation problems. In this paper, we
propose a solution to the joint problem of image super-resolution and
multi-modality image-to-image translation. The problem can be stated as the
recovery of a high-resolution image in a modality, given a low-resolution
observation of the same image in an alternative modality. Our paper offers two
models to address this problem and will be evaluated on the recovery of
high-resolution day images given low-resolution night images of the same scene.
Promising qualitative and quantitative results will be presented for each
model.
Related papers
- How Real is Real: Evaluating the Robustness of Real-World Super
Resolution [0.0]
Super-resolution is a well-known problem as most methods rely on the downsampling method performed on the high-resolution image to form the low-resolution image to be known.
We will evaluate multiple state-of-the-art super-resolution methods and gauge their performance when presented with various types of real-life images.
We will present a potential solution to alleviate the generalization problem which is imminent in most state-of-the-art super-resolution models.
arXiv Detail & Related papers (2022-10-22T18:53:45Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
Cross-resolution person re-identification problem aims to match low-resolution (LR) query identity images against high resolution (HR) gallery images.
It is a challenging and practical problem since the query images often suffer from resolution degradation due to the different capturing conditions from real-world cameras.
This paper explores an alternative SR-free paradigm to directly compare HR and LR images via a dynamic metric, which is adaptive to the resolution of a query image.
arXiv Detail & Related papers (2022-07-09T03:49:51Z) - High-Frequency aware Perceptual Image Enhancement [0.08460698440162888]
We introduce a novel deep neural network suitable for multi-scale analysis and propose efficient model-agnostic methods.
Our model can be applied to multi-scale image enhancement problems including denoising, deblurring and single image super-resolution.
arXiv Detail & Related papers (2021-05-25T07:33:14Z) - A Generative Model for Hallucinating Diverse Versions of Super
Resolution Images [0.3222802562733786]
We are tackling in this work the problem of obtaining different high-resolution versions from the same low-resolution image using Generative Adversarial Models.
Our learning approach makes use of high frequencies available in the training high-resolution images for preserving and exploring in an unsupervised manner.
arXiv Detail & Related papers (2021-02-12T17:11:42Z) - Image Matching with Scale Adjustment [57.18604132027697]
We show how to represent and extract interest points at variable scales.
We devise a method allowing the comparison of two images at two different resolutions.
arXiv Detail & Related papers (2020-12-10T11:03:25Z) - Mapping Low-Resolution Images To Multiple High-Resolution Images Using
Non-Adversarial Mapping [6.302374268077337]
We argue that, first and foremost, the problem of SISR is an one-to-many mapping problem between the low-resolution and all possible candidate high-resolution images.
We propose a model that learns how to transform high-resolution images to low-resolution images that resemble realistically taken low-resolution photos.
arXiv Detail & Related papers (2020-06-21T04:14:24Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
We revisit the classic example based image super-resolution approaches and come up with a novel generative model for perceptual image super-resolution.
We propose a joint image denoising and super-resolution model via Variational AutoEncoder.
With the aid of the discriminator, an additional overhead of super-resolution subnetwork is attached to super-resolve the denoised image with photo-realistic visual quality.
arXiv Detail & Related papers (2020-04-27T13:49:36Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.