論文の概要: Agricultural Plantation Classification using Transfer Learning Approach
based on CNN
- arxiv url: http://arxiv.org/abs/2206.09420v1
- Date: Sun, 19 Jun 2022 14:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 13:30:31.275341
- Title: Agricultural Plantation Classification using Transfer Learning Approach
based on CNN
- Title(参考訳): CNNに基づく移動学習アプローチを用いた農業プランテーション分類
- Authors: Uphar Singh, Tushar Musale, Ranjana Vyas, O.P.Vyas (Indian Institute
of Information Technology, Allahabad, India)
- Abstract要約: 深層学習により高スペクトル画像認識の効率は著しく向上した。
CNNとMulti-Layer Perceptron(MLP)は画像の分類に優れたプロセスであることが示されている。
本稿では,移動学習の手法を用いて,学習時間を短縮し,ラベル付き大規模データセットへの依存を減らすことを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyper-spectral images are images captured from a satellite that gives spatial
and spectral information of specific region.A Hyper-spectral image contains
much more number of channels as compared to a RGB image, hence containing more
information about entities within the image. It makes them well suited for the
classification of objects in a snap. In the past years, the efficiency of
hyper-spectral image recognition has increased significantly with deep
learning. The Convolution Neural Network(CNN) and Multi-Layer Perceptron(MLP)
has demonstrated to be an excellent process of classifying images. However,
they suffer from the issues of long training time and requirement of large
amounts of the labeled data, to achieve the expected outcome. These issues
become more complex while dealing with hyper-spectral images. To decrease the
training time and reduce the dependence on large labeled data-set, we propose
using the method of transfer learning.The features learned by CNN and MLP
models are then used by the transfer learning model to solve a new
classification problem on an unseen dataset. A detailed comparison of CNN and
multiple MLP architectural models is performed, to determine an optimum
architecture that suits best the objective. The results show that the scaling
of layers not always leads to increase in accuracy but often leads to
over-fitting, and also an increase in the training time.The training time is
reduced to greater extent by applying the transfer learning approach rather
than just approaching the problem by directly training a new model on large
data-sets, without much affecting the accuracy.
- Abstract(参考訳): ハイパースペクトル画像(Hyper-spectral image)は、特定の領域の空間的およびスペクトル的な情報を与える衛星から撮影された画像である。
これは、オブジェクトをスナップで分類するのに適しています。
近年,深層学習により高スペクトル画像認識の効率が著しく向上している。
Convolution Neural Network(CNN)とMulti-Layer Perceptron(MLP)は、画像の分類に優れたプロセスであることが示されている。
しかし、彼らは、期待される結果を達成するために、長い訓練時間と大量のラベル付きデータを必要とする問題に苦しむ。
これらの問題はハイパースペクトル画像を扱う際にさらに複雑になる。
学習時間を短縮し,大規模ラベル付きデータセットへの依存度を低減するために,cnnおよびmlpモデルで学習した特徴を転送学習モデルで活用し,未知データセットにおける新しい分類問題を解く。
CNNと複数のMLPアーキテクチャモデルとの詳細な比較を行い、目的に適した最適なアーキテクチャを決定する。
その結果,新しいモデルを大規模データセット上で直接トレーニングすることによって問題にアプローチするのではなく,トランスファー学習アプローチを適用することで,学習時間が大幅に短縮され,精度に大きな影響を与えることなく精度が向上することがわかった。
関連論文リスト
- Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
ジオタグ付き画像の自己教師型学習フレームワークであるContrastive Spatial Pre-Training(CSP)を提案する。
デュアルエンコーダを用いて画像とその対応する位置情報を別々に符号化し、コントラスト目的を用いて画像から効果的な位置表現を学習する。
CSPは、様々なラベル付きトレーニングデータサンプリング比と10~34%の相対的な改善で、モデル性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-01T23:11:18Z) - Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient
Image Classification [3.9310727060473476]
本稿では,データ効率のよい画像分類のための遺伝的プログラミングに基づく進化的深層学習手法を提案する。
この新しいアプローチは、画像領域と分類領域の両方から多くの重要な演算子を使用して、変数長モデルを自動的に進化させることができる。
フレキシブルな多層表現により、新しいアプローチは、タスクごとに浅いモデルや深いモデルやツリーを自動的に構築できる。
論文 参考訳(メタデータ) (2022-09-27T08:10:16Z) - Terrain Classification using Transfer Learning on Hyperspectral Images:
A Comparative study [0.13999481573773068]
畳み込みニューラルネットワーク(CNN)とMulti-Layer Perceptron(MLP)は画像分類の有効な方法であることが証明されている。
しかし、彼らは長いトレーニング時間と大量のラベル付きデータの要求の問題に悩まされている。
本稿では,移動学習法を用いてトレーニング時間を短縮し,大規模ラベル付きデータセットへの依存を減らすことを提案する。
論文 参考訳(メタデータ) (2022-06-19T14:36:33Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
本稿では,空間スペクトル情報の効率的な抽出を実現するために,高スペクトル画像(HSI)のための高速多スケール畳み込みモジュールを提案する。
マスクオートエンコーダと同様に、我々の事前学習法は、エンコーダ内の中央画素の対応するトークンのみをマスクし、残りのトークンをデコーダに入力し、中央画素のスペクトル情報を再構成する。
論文 参考訳(メタデータ) (2022-03-09T14:42:26Z) - Few-Shot Learning for Image Classification of Common Flora [0.0]
MAML(Model-Agnostic Meta Learning)を用いた画像分類のためのメタラーニング分野の最先端の研究と、さまざまな最先端のトランスファーラーニングウェイトとアーキテクチャをテストした結果を紹介します。
その結果、データセットが十分に大きい場合、両方のプラクティスが十分なパフォーマンスを提供しますが、十分なパフォーマンスを維持するためにデータスパーシャビリティが導入されると、どちらも苦労しています。
論文 参考訳(メタデータ) (2021-05-07T03:54:51Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
我々は,大規模なラベル付きデータからRSIシーン分類のための高性能事前学習モデルを得るために,新たな自己教師付き学習(SSL)機構を導入する。
一般的な3つのRSIシーン分類データセットの実験により、この新たな学習パラダイムは、従来の支配的なImageNet事前学習モデルよりも優れていることが示された。
我々の研究から得られた知見は、リモートセンシングコミュニティにおけるSSLの発展を促進するのに役立ちます。
論文 参考訳(メタデータ) (2020-10-02T09:27:19Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。