Knowledge Distillation for Oriented Object Detection on Aerial Images
- URL: http://arxiv.org/abs/2206.09796v1
- Date: Mon, 20 Jun 2022 14:24:16 GMT
- Title: Knowledge Distillation for Oriented Object Detection on Aerial Images
- Authors: Yicheng Xiao, Junpeng Zhang
- Abstract summary: We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
- Score: 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural network with increased number of parameters has
achieved improved precision in task of object detection on natural images,
where objects of interests are annotated with horizontal boundary boxes. On
aerial images captured from the bird-view perspective, these improvements on
model architecture and deeper convolutional layers can also boost the
performance on oriented object detection task. However, it is hard to directly
apply those state-of-the-art object detectors on the devices with limited
computation resources, which necessitates lightweight models through model
compression. In order to address this issue, we present a model compression
method for rotated object detection on aerial images by knowledge distillation,
namely KD-RNet. With a well-trained teacher oriented object detector with a
large number of parameters, the obtained object category and location
information are both transferred to a compact student network in KD-RNet by
collaborative training strategy. Transferring the category information is
achieved by knowledge distillation on predicted probability distribution, and a
soft regression loss is adopted for handling displacement in location
information transfer. The experimental result on a large-scale aerial object
detection dataset (DOTA) demonstrates that the proposed KD-RNet model can
achieve improved mean-average precision (mAP) with reduced number of
parameters, at the same time, KD-RNet boost the performance on providing high
quality detections with higher overlap with groundtruth annotations.
Related papers
- Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
arXiv Detail & Related papers (2024-05-17T04:37:44Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
Small object detection in aerial imagery presents significant challenges in computer vision.
Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases.
This paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects.
arXiv Detail & Related papers (2024-05-02T19:47:08Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.