Better Sampling, towards Better End-to-end Small Object Detection
- URL: http://arxiv.org/abs/2407.06127v1
- Date: Fri, 17 May 2024 04:37:44 GMT
- Title: Better Sampling, towards Better End-to-end Small Object Detection
- Authors: Zile Huang, Chong Zhang, Mingyu Jin, Fangyu Wu, Chengzhi Liu, Xiaobo Jin,
- Abstract summary: Small object detection remains unsatisfactory due to limited characteristics and high density and mutual overlap.
We propose methods enhancing sampling within an end-to-end framework.
Our model demonstrates a significant enhancement, achieving a 2.9% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset.
- Score: 7.7473020808686694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While deep learning-based general object detection has made significant strides in recent years, the effectiveness and efficiency of small object detection remain unsatisfactory. This is primarily attributed not only to the limited characteristics of such small targets but also to the high density and mutual overlap among these targets. The existing transformer-based small object detectors do not leverage the gap between accuracy and inference speed. To address challenges, we propose methods enhancing sampling within an end-to-end framework. Sample Points Refinement (SPR) constrains localization and attention, preserving meaningful interactions in the region of interest and filtering out misleading information. Scale-aligned Target (ST) integrates scale information into target confidence, improving classification for small object detection. A task-decoupled Sample Reweighting (SR) mechanism guides attention toward challenging positive examples, utilizing a weight generator module to assess the difficulty and adjust classification loss based on decoder layer outcomes. Comprehensive experiments across various benchmarks reveal that our proposed detector excels in detecting small objects. Our model demonstrates a significant enhancement, achieving a 2.9\% increase in average precision (AP) over the state-of-the-art (SOTA) on the VisDrone dataset and a 1.7\% improvement on the SODA-D dataset.
Related papers
- Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
arXiv Detail & Related papers (2024-04-29T04:56:52Z) - Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
We introduce Sparse Semi-DETR, a novel transformer-based, end-to-end semi-supervised object detection solution.
Sparse Semi-DETR incorporates a Query Refinement Module to enhance the quality of object queries, significantly improving detection capabilities for small and partially obscured objects.
On the MS-COCO and Pascal VOC object detection benchmarks, Sparse Semi-DETR achieves a significant improvement over current state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T10:22:23Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.