Regression of high dimensional angular momentum states of light
- URL: http://arxiv.org/abs/2206.09873v1
- Date: Mon, 20 Jun 2022 16:16:48 GMT
- Title: Regression of high dimensional angular momentum states of light
- Authors: Danilo Zia, Riccardo Checchinato, Alessia Suprano, Taira Giordani,
Emanuele Polino, Luca Innocenti, Alessandro Ferraro, Mauro Paternostro,
Nicol\`o Spagnolo and Fabio Sciarrino
- Abstract summary: We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
- Score: 47.187609203210705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Orbital Angular Momentum (OAM) of light is an infinite-dimensional degree
of freedom of light with several applications in both classical and quantum
optics. However, to fully take advantage of the potential of OAM states,
reliable detection platforms to characterize generated states in experimental
conditions are needed. Here, we present an approach to reconstruct input OAM
states from measurements of the spatial intensity distributions they produce.
To obviate issues arising from intrinsic symmetry of Laguerre-Gauss modes, we
employ a pair of intensity profiles per state projecting it only on two
distinct bases, showing how this allows to uniquely recover input states from
the collected data. Our approach is based on a combined application of
dimensionality reduction via principal component analysis, and linear
regression, and thus has a low computational cost during both training and
testing stages. We showcase our approach in a real photonic setup, generating
up-to-four-dimensional OAM states through a quantum walk dynamics. The high
performances and versatility of the demonstrated approach make it an ideal tool
to characterize high dimensional states in quantum information protocols.
Related papers
- High-dimensional maximally entangled photon pairs in parametric down-conversion [0.0]
Laguerre-Gaussian modes, which carry orbital angular momentum (OAM), are commonly exploited to engineer high-dimensional entangled quantum states.
For Hilbert spaces with d>2, maximally entangled states (MESs) help to improve the capacity and security of quantum communication protocols.
We formalize how the spatial distribution of the pump beam and the nonlinear profile of the crystal can be simultaneously utilized to generate MES.
arXiv Detail & Related papers (2024-07-12T14:13:04Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - Experimental Quantum Simulation of Dynamic Localization on Curved
Photonic Lattices [18.469890724212902]
We fabricate one-dimensional and hexagonal two-dimensional arrays, both with sinusoidal curvature.
We successfully observe the suppressed single-photon evolution patterns, and for the first time measure the variances to study their transport properties.
We demonstrate a useful quantum simulation of dynamic localization for studying their anisotropic transport properties, and a promising application of dynamic localization as a building block for quantum information processing in integrated photonics.
arXiv Detail & Related papers (2022-05-26T09:03:42Z) - Enhanced detection techniques of Orbital Angular Momentum states in the
classical and quantum regimes [48.7576911714538]
Complex structure inherent in Orbital Angular Momentum (OAM) states makes their detection and classification nontrivial.
Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre-Gauss modes.
We employ Hypergeometric-Gaussian modes as the basis states of a refined model that can be used -- in certain scenarios -- to better tailor OAM detection techniques.
arXiv Detail & Related papers (2022-01-19T18:46:34Z) - Entanglement of Orbital Angular Momentum in Non-Sequential Double
Ionization [0.0]
We demonstrate entanglement between the orbital angular momentum (OAM) of two photoelectrons ionized via the strongly correlated process of non-sequential double ionization (N)
Due to the quantization of OAM, this entanglement is easily quantified and has a simple physical interpretation in terms of conservation laws.
arXiv Detail & Related papers (2021-11-19T10:50:02Z) - Characterising and Tailoring Spatial Correlations in Multi-Mode
Parametric Downconversion [0.0]
We formalise a description of the two-photon wavefunction in the spatial domain, referred to as the collected joint-transverse-momentum-amplitude (JTMA)
We propose and demonstrate a practical and efficient method to accurately reconstruct the collected JTMA using a simple phase-step scan known as the $2Dpi$-measurement.
arXiv Detail & Related papers (2021-10-07T13:40:28Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.