High-dimensional maximally entangled photon pairs in parametric down-conversion
- URL: http://arxiv.org/abs/2407.09280v3
- Date: Fri, 27 Sep 2024 07:51:18 GMT
- Title: High-dimensional maximally entangled photon pairs in parametric down-conversion
- Authors: Richard Bernecker, Baghdasar Baghdasaryan, Stephan Fritzsche,
- Abstract summary: Laguerre-Gaussian modes, which carry orbital angular momentum (OAM), are commonly exploited to engineer high-dimensional entangled quantum states.
For Hilbert spaces with d>2, maximally entangled states (MESs) help to improve the capacity and security of quantum communication protocols.
We formalize how the spatial distribution of the pump beam and the nonlinear profile of the crystal can be simultaneously utilized to generate MES.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photon pairs generated from spontaneous parametric down-conversion are a well-established method to realize entangled bipartite photonic systems. Laguerre-Gaussian modes, which carry orbital angular momentum (OAM), are commonly exploited to engineer high-dimensional entangled quantum states. %experimentally. For Hilbert spaces with dimension d>2, maximally entangled states (MESs) help to improve the capacity and security of quantum communication protocols, among several other promising features. However, the direct generation of MES in well-defined high-dimensional subspaces of the infinite OAM basis has remained a challenge. Here, we formalize how the spatial distribution of the pump beam and the nonlinear profile of the crystal can be simultaneously utilized to generate MES without additional spatial filtering of OAM modes within a subspace. We illustrate our approach with maximally entangled qutrits (d=3) and ququints (d=5).
Related papers
- Spatial-spectral mapping to prepare the frequency entangled qudits [4.5526899359065744]
Entangled qudits play an important role in the study of quantum information.
How to prepare entangled qudits in an efficient and easy-to-operate manner is still a challenge in quantum technology.
arXiv Detail & Related papers (2023-07-17T15:54:05Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Orbital angular momentum based intra- and inter- particle entangled
states generated via a quantum dot source [0.0]
This work employs a bright QD single-photon source to generate a complete set of quantum states for information processing with OAM photons.
We first study the hybrid intra-particle entanglement between the OAM and the polarization degree of freedom of a single-photon.
Then, we investigate the hybrid inter-particle entanglement, by exploiting a probabilistic two qudit OAM-based entangling gate.
arXiv Detail & Related papers (2022-11-09T19:20:49Z) - Supersymmetric reshaping and higher-dimensional rearrangement of
photonic lattices [68.8204255655161]
We build two-dimensional (2D) systems with spectra identical to that of one-dimensional (1D) Jx lattices.
While exhibiting different dynamics, these 2D systems retain the key imaging and state transfer properties of the 1D Jx lattice.
Our method extends to other systems with separable spectra, facilitates experimental fabrication, and may increase robustness to fabrication imperfections in large-scale photonic circuits.
arXiv Detail & Related papers (2022-09-26T16:56:41Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - High-Dimensional Entanglement of Photonic Angular Qudits [0.0]
We propose a method for generation of entangled photonic states in high dimensions, the so-called qudits.
Diffraction masks containing $N$ angular slits placed in the path of twin photons define a qudit space of dimension $N2$, spanned by alternative pathways of OAM-entangled photons.
We quantify the high-dimensional entanglement of path-entangled photons by the Concurrence, using an analytic expression valid for pure states.
arXiv Detail & Related papers (2021-10-14T07:14:03Z) - Characterising and Tailoring Spatial Correlations in Multi-Mode
Parametric Downconversion [0.0]
We formalise a description of the two-photon wavefunction in the spatial domain, referred to as the collected joint-transverse-momentum-amplitude (JTMA)
We propose and demonstrate a practical and efficient method to accurately reconstruct the collected JTMA using a simple phase-step scan known as the $2Dpi$-measurement.
arXiv Detail & Related papers (2021-10-07T13:40:28Z) - Entangled ripples and twists of light: Radial and azimuthal
Laguerre-Gaussian mode entanglement [0.0]
We demonstrate the generation and certification of full-field Laguerre-Gaussian entanglement between photons pairs.
Our work demonstrates the potential offered by the full spatial structure of the two-photon field for enhancing technologies for quantum information processing and communication.
arXiv Detail & Related papers (2021-04-09T17:46:50Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.