KOLOMVERSE: Korea open large-scale image dataset for object detection in the maritime universe
- URL: http://arxiv.org/abs/2206.09885v2
- Date: Tue, 01 Oct 2024 20:20:16 GMT
- Title: KOLOMVERSE: Korea open large-scale image dataset for object detection in the maritime universe
- Authors: Abhilasha Nanda, Sung Won Cho, Hyeopwoo Lee, Jin Hyoung Park,
- Abstract summary: We present KOLOMVERSE, an open large-scale image dataset for object detection in the maritime domain by KRISO.
We collected 5,845 hours of video data captured from 21 territorial waters of South Korea.
The dataset has images of 3840$times$2160 pixels and to our knowledge, it is by far the largest publicly available dataset for object detection in the maritime domain.
- Score: 0.5732204366512352
- License:
- Abstract: Over the years, datasets have been developed for various object detection tasks. Object detection in the maritime domain is essential for the safety and navigation of ships. However, there is still a lack of publicly available large-scale datasets in the maritime domain. To overcome this challenge, we present KOLOMVERSE, an open large-scale image dataset for object detection in the maritime domain by KRISO (Korea Research Institute of Ships and Ocean Engineering). We collected 5,845 hours of video data captured from 21 territorial waters of South Korea. Through an elaborate data quality assessment process, we gathered around 2,151,470 4K resolution images from the video data. This dataset considers various environments: weather, time, illumination, occlusion, viewpoint, background, wind speed, and visibility. The KOLOMVERSE consists of five classes (ship, buoy, fishnet buoy, lighthouse and wind farm) for maritime object detection. The dataset has images of 3840$\times$2160 pixels and to our knowledge, it is by far the largest publicly available dataset for object detection in the maritime domain. We performed object detection experiments and evaluated our dataset on several pre-trained state-of-the-art architectures to show the effectiveness and usefulness of our dataset. The dataset is available at: \url{https://github.com/MaritimeDataset/KOLOMVERSE}.
Related papers
- SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - LaRS: A Diverse Panoptic Maritime Obstacle Detection Dataset and
Benchmark [9.864996020621701]
We present the first maritime panoptic obstacle detection benchmark LaRS, featuring scenes from Lakes, Rivers and Seas.
LaRS is composed of over 4000 per-pixel labeled key frames with nine preceding frames to allow utilization of the temporal texture.
We report the results of 27 semantic and panoptic segmentation methods, along with several performance insights and future research directions.
arXiv Detail & Related papers (2023-08-18T15:21:15Z) - Indiscernible Object Counting in Underwater Scenes [91.86044762367945]
Indiscernible object counting is the goal of which is to count objects that are blended with respect to their surroundings.
We present a large-scale dataset IOCfish5K which contains a total of 5,637 high-resolution images and 659,024 annotated center points.
arXiv Detail & Related papers (2023-04-23T15:09:02Z) - A Dataset with Multibeam Forward-Looking Sonar for Underwater Object
Detection [0.0]
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection.
There are several challenges to the research on underwater object detection with MFLS.
We present a novel dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar.
arXiv Detail & Related papers (2022-12-01T08:26:03Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems.
It is now possible to automate detection of dark vessels day or night, under all-weather conditions.
xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission.
arXiv Detail & Related papers (2022-06-02T06:53:45Z) - SeaDronesSee: A Maritime Benchmark for Detecting Humans in Open Water [13.216389226310987]
This paper introduces a large-scaled visual object detection and tracking benchmark (SeaDronesSee)
We collect and annotate over 54,000 frames with 400,000 instances captured from various altitudes and viewing angles ranging from 5 to 260 meters and 0 to 90 degrees.
We evaluate multiple state-of-the-art computer vision algorithms on this newly established benchmark serving as baselines.
arXiv Detail & Related papers (2021-05-05T08:18:36Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - ABOShips -- An Inshore and Offshore Maritime Vessel Detection Dataset
with Precise Annotations [0.17205106391379021]
Maritime vessel detection of inshore and offshore datasets is no exception.
We collected a dataset of images of maritime vessels taking into account different factors.
Vessel instances (including 9 types of vessels), seamarks and miscellaneous floaters were precisely annotated.
We evaluated the the out-of-the-box performance of four prevalent object detection algorithms.
arXiv Detail & Related papers (2021-02-11T07:05:33Z) - TJU-DHD: A Diverse High-Resolution Dataset for Object Detection [48.94731638729273]
Large-scale, rich-diversity, and high-resolution datasets play an important role in developing better object detection methods.
We build a diverse high-resolution dataset (called TJU-DHD)
The dataset contains 115,354 high-resolution images and 709,330 labeled objects with a large variance in scale and appearance.
arXiv Detail & Related papers (2020-11-18T09:32:24Z) - FGSD: A Dataset for Fine-Grained Ship Detection in High Resolution
Satellite Images [22.883300168530035]
Ship detection using high-resolution remote sensing images is an important task, which contribute to sea surface regulation.
To promote the research of ship detection, we introduced a new fine-grained ship detection datasets, which is named as FGSD.
The dataset collects high-resolution remote sensing images that containing ship samples from multiple large ports around the world.
arXiv Detail & Related papers (2020-03-15T13:54:20Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
A novel ships dataset is proposed consisting of more than 56k images of marine vessels collected by means of web-scraping.
A YOLOv3 single-stage detector based on Keras API is built on top of this dataset.
arXiv Detail & Related papers (2020-02-10T15:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.