MID: A Comprehensive Shore-Based Dataset for Multi-Scale Dense Ship Occlusion and Interaction Scenarios
- URL: http://arxiv.org/abs/2412.05871v3
- Date: Wed, 11 Dec 2024 03:58:47 GMT
- Title: MID: A Comprehensive Shore-Based Dataset for Multi-Scale Dense Ship Occlusion and Interaction Scenarios
- Authors: Yugang Chang, Hongyu Chen, Fei Wang, Chengcheng Chen, Weiming Zeng,
- Abstract summary: The Maritime Ship Navigation Behavior dataset (MID) is designed to address challenges in ship detection within complex maritime environments.
MID contains 5,673 images with 135,884 finely annotated target instances, supporting both supervised and semi-supervised learning.
MID's images are sourced from high-definition video clips of real-world navigation across 43 water areas, with varied weather and lighting conditions.
- Score: 10.748210940033484
- License:
- Abstract: This paper introduces the Maritime Ship Navigation Behavior Dataset (MID), designed to address challenges in ship detection within complex maritime environments using Oriented Bounding Boxes (OBB). MID contains 5,673 images with 135,884 finely annotated target instances, supporting both supervised and semi-supervised learning. It features diverse maritime scenarios such as ship encounters under varying weather, docking maneuvers, small target clustering, and partial occlusions, filling critical gaps in datasets like HRSID, SSDD, and NWPU-10. MID's images are sourced from high-definition video clips of real-world navigation across 43 water areas, with varied weather and lighting conditions (e.g., rain, fog). Manually curated annotations enhance the dataset's variety, ensuring its applicability to real-world demands in busy ports and dense maritime regions. This diversity equips models trained on MID to better handle complex, dynamic environments, supporting advancements in maritime situational awareness. To validate MID's utility, we evaluated 10 detection algorithms, providing an in-depth analysis of the dataset, detection results from various models, and a comparative study of baseline algorithms, with a focus on handling occlusions and dense target clusters. The results highlight MID's potential to drive innovation in intelligent maritime traffic monitoring and autonomous navigation systems. The dataset will be made publicly available at https://github.com/VirtualNew/MID_DataSet.
Related papers
- Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
The maritime shipping industry is undergoing rapid evolution driven by advancements in computer vision artificial intelligence (AI)
object recognition in maritime environments faces challenges such as light reflection, interference, intense lighting, and various weather conditions.
Existing AI recognition models and datasets have limited suitability for composing autonomous navigation systems.
arXiv Detail & Related papers (2024-07-12T05:48:53Z) - SeePerSea: Multi-modal Perception Dataset of In-water Objects for Autonomous Surface Vehicles [10.732732686425308]
This paper introduces the first publicly accessible labeled multi-modal perception dataset for autonomous maritime navigation.
It focuses on in-water obstacles within the aquatic environment to enhance situational awareness for Autonomous Surface Vehicles (ASVs)
arXiv Detail & Related papers (2024-04-29T04:00:19Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
This paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions.
The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog.
The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset.
arXiv Detail & Related papers (2023-08-08T14:25:13Z) - Scaling Data Generation in Vision-and-Language Navigation [116.95534559103788]
We propose an effective paradigm for generating large-scale data for learning.
We apply 1200+ photo-realistic environments from HM3D and Gibson datasets and synthesizes 4.9 million instruction trajectory pairs.
Thanks to our large-scale dataset, the performance of an existing agent can be pushed up (+11% absolute with regard to previous SoTA) to a significantly new best of 80% single-run success rate on the R2R test split by simple imitation learning.
arXiv Detail & Related papers (2023-07-28T16:03:28Z) - SimuShips -- A High Resolution Simulation Dataset for Ship Detection
with Precise Annotations [0.0]
State-of-the-art obstacle detection algorithms are based on convolutional neural networks (CNNs)
SimuShips is a publicly available simulation-based dataset for maritime environments.
arXiv Detail & Related papers (2022-09-22T07:33:31Z) - Collaborative Visual Navigation [69.20264563368762]
We propose a large-scale 3D dataset, CollaVN, for multi-agent visual navigation (MAVN)
Diverse MAVN variants are explored to make our problem more general.
A memory-augmented communication framework is proposed. Each agent is equipped with a private, external memory to persistently store communication information.
arXiv Detail & Related papers (2021-07-02T15:48:16Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
We propose novel TridentAlign and context embedding modules for Siamese network-based visual tracking methods.
The performance of the proposed tracker is comparable to that of state-of-the-art trackers, while the proposed tracker runs at real-time speed.
arXiv Detail & Related papers (2020-07-14T08:00:26Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.