論文の概要: QuAFL: Federated Averaging Can Be Both Asynchronous and
Communication-Efficient
- arxiv url: http://arxiv.org/abs/2206.10032v1
- Date: Mon, 20 Jun 2022 22:39:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 18:19:53.223806
- Title: QuAFL: Federated Averaging Can Be Both Asynchronous and
Communication-Efficient
- Title(参考訳): QuAFL: 平均的フェデレーションは非同期かつ通信効率が良い
- Authors: Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh
- Abstract要約: 本稿では,非同期通信と通信圧縮の両方をサポートする古典的フェデレーション平均化アルゴリズム(FedAvg)を提案する。
実験的な側面から,我々のアルゴリズムは,標準的なフェデレーションタスクの高速な実践的収束を保証する。
- 参考スコア(独自算出の注目度): 22.432529149142976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is an emerging paradigm to enable the large-scale
distributed training of machine learning models, while still providing privacy
guarantees.
In this work, we jointly address two of the main practical challenges when
scaling federated optimization to large node counts: the need for tight
synchronization between the central authority and individual computing nodes,
and the large communication cost of transmissions between the central server
and clients.
Specifically, we present a new variant of the classic federated averaging
(FedAvg) algorithm, which supports both asynchronous communication and
communication compression. We provide a new analysis technique showing that, in
spite of these system relaxations, our algorithm essentially matches the best
known bounds for FedAvg, under reasonable parameter settings.
On the experimental side, we show that our algorithm ensures fast practical
convergence for standard federated tasks.
- Abstract(参考訳): Federated Learning(FL)は、マシンラーニングモデルの大規模分散トレーニングを可能にするとともに、プライバシ保証も提供する、新たなパラダイムである。
本研究では,大ノード数へのフェデレーション最適化のスケールアップにおける2つの課題として,中央局と個別の計算ノード間の緊密な同期の必要性と,中央サーバとクライアント間の通信コストの大幅な増大を挙げる。
具体的には、非同期通信と通信圧縮の両方をサポートする古典的フェデレーション平均化アルゴリズム(FedAvg)を提案する。
システム緩和にもかかわらず、我々のアルゴリズムは基本的に、適切なパラメータ設定の下で、FedAvgの最もよく知られた境界と一致することを示す新しい分析手法を提供する。
実験的な側面から,我々のアルゴリズムは,標準的なフェデレーションタスクの高速な実践的収束を保証する。
関連論文リスト
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous
Client Devices using a Computing Power Aware Scheduler [5.550660753625296]
クロスサイロフェデレーション学習は、ローカルデータセットのプライバシを損なうことなく、AIモデルを協調的にトレーニングする、有望なソリューションを提供する。
本稿では,サーバ側で計算パワースケジューラを組み込んだ,半同期型フェデレーション学習アルゴリズムを提案する。
上位クライアントでフェデレート学習を行う場合,Fedは他のアルゴリズムよりも高速な収束と精度を実現することを示す。
論文 参考訳(メタデータ) (2023-09-26T05:03:13Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Momentum Benefits Non-IID Federated Learning Simply and Provably [22.800862422479913]
フェデレートラーニングは大規模機械学習の強力なパラダイムである。
FedAvgとSCAFFOLDは、これらの課題に対処する2つの顕著なアルゴリズムである。
本稿では,FedAvgとSCAFFOLDの性能向上のための運動量の利用について検討する。
論文 参考訳(メタデータ) (2023-06-28T18:52:27Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Speeding up Heterogeneous Federated Learning with Sequentially Trained
Superclients [19.496278017418113]
フェデレートラーニング(FL)は、ローカルなデータ共有を必要とせず、エッジデバイスの協調を可能にすることにより、プライバシに制約のあるシナリオで機械学習モデルをトレーニングすることを可能にする。
このアプローチは、ローカルデータセットとクライアントの計算的不均一性の異なる統計分布のために、いくつかの課題を提起する。
我々は、多種多様なクライアント、すなわちスーパークオリエントの部分グループのシーケンシャルトレーニングを活用して、集中型パラダイムをプライバシに準拠した方法でエミュレートする新しいフレームワークであるFedSeqを提案する。
論文 参考訳(メタデータ) (2022-01-26T12:33:23Z) - Two-Bit Aggregation for Communication Efficient and Differentially
Private Federated Learning [79.66767935077925]
フェデレートラーニング(FL)では、機械学習モデルは、データをローカルに保ち、他のノードと共有しない状態で、複数のノードで分散的にトレーニングされる。
ノードからサーバに送信された情報は、各ノードのローカルデータの詳細を明らかにする可能性があるため、プライバシー上の懸念が生じる。
差分プライバシーを保証し、アップリンク通信オーバーヘッドを低減した2ビットアグリゲーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-06T19:03:58Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。