Reconstruct from Top View: A 3D Lane Detection Approach based on
Geometry Structure Prior
- URL: http://arxiv.org/abs/2206.10098v1
- Date: Tue, 21 Jun 2022 04:03:03 GMT
- Title: Reconstruct from Top View: A 3D Lane Detection Approach based on
Geometry Structure Prior
- Authors: Chenguang Li, Jia Shi, Ya Wang, Guangliang Cheng
- Abstract summary: We propose an advanced approach in targeting the problem of monocular 3D lane detection by leveraging geometry structure underneath process of 2D to 3D lane reconstruction.
We first analyze the geometry between the 3D lane and its 2D representation on the ground and propose to impose explicit supervision based on the structure prior.
Second, to reduce the structure loss in 2D lane representation, we directly extract top view lane information from front view images.
- Score: 19.1954119672487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an advanced approach in targeting the problem of
monocular 3D lane detection by leveraging geometry structure underneath the
process of 2D to 3D lane reconstruction. Inspired by previous methods, we first
analyze the geometry heuristic between the 3D lane and its 2D representation on
the ground and propose to impose explicit supervision based on the structure
prior, which makes it achievable to build inter-lane and intra-lane
relationships to facilitate the reconstruction of 3D lanes from local to
global. Second, to reduce the structure loss in 2D lane representation, we
directly extract top view lane information from front view images, which
tremendously eases the confusion of distant lane features in previous methods.
Furthermore, we propose a novel task-specific data augmentation method by
synthesizing new training data for both segmentation and reconstruction tasks
in our pipeline, to counter the imbalanced data distribution of camera pose and
ground slope to improve generalization on unseen data. Our work marks the first
attempt to employ the geometry prior information into DNN-based 3D lane
detection and makes it achievable for detecting lanes in an extra-long
distance, doubling the original detection range. The proposed method can be
smoothly adopted by other frameworks without extra costs. Experimental results
show that our work outperforms state-of-the-art approaches by 3.8% F-Score on
Apollo 3D synthetic dataset at real-time speed of 82 FPS without introducing
extra parameters.
Related papers
- 3D Lane Detection from Front or Surround-View using Joint-Modeling & Matching [27.588395086563978]
We propose a joint modeling approach that combines Bezier curves and methods.
We also introduce a novel 3D Spatial, representing an exploration of 3D surround-view lane detection research.
This innovative method establishes a new benchmark in front-view 3D lane detection on the Openlane dataset.
arXiv Detail & Related papers (2024-01-16T01:12:24Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
curve-based lane representation is a popular approach in many lane detection methods.
We propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression.
arXiv Detail & Related papers (2023-09-19T11:24:14Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
This paper studies the problem of structured lineframe junctions using 3D reconstruction segments andFocusing junctions.
ProjectNEAT enjoys the joint neural fields and view without crossart matching from scratch.
arXiv Detail & Related papers (2023-07-14T07:25:47Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - ONCE-3DLanes: Building Monocular 3D Lane Detection [41.46466150783367]
We present ONCE-3DLanes, a real-world autonomous driving dataset with lane layout annotation in 3D space.
By exploiting the explicit relationship between point clouds and image pixels, a dataset annotation pipeline is designed to automatically generate high-quality 3D lane locations.
arXiv Detail & Related papers (2022-04-30T16:35:25Z) - Monocular Road Planar Parallax Estimation [25.36368935789501]
Estimating the 3D structure of the drivable surface and surrounding environment is a crucial task for assisted and autonomous driving.
We propose Road Planar Parallax Attention Network (RPANet), a new deep neural network for 3D sensing from monocular image sequences.
RPANet takes a pair of images aligned by the homography of the road plane as input and outputs a $gamma$ map for 3D reconstruction.
arXiv Detail & Related papers (2021-11-22T10:03:41Z) - Next-best-view Regression using a 3D Convolutional Neural Network [0.9449650062296823]
We propose a data-driven approach to address the next-best-view problem.
The proposed approach trains a 3D convolutional neural network with previous reconstructions in order to regress the btxtposition of the next-best-view.
We have validated the proposed approach making use of two groups of experiments.
arXiv Detail & Related papers (2021-01-23T01:50:26Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.