Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation
- URL: http://arxiv.org/abs/2209.04599v1
- Date: Sat, 10 Sep 2022 05:20:31 GMT
- Title: Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation
- Authors: Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyan Wu, Terrence
Chen, David Doermann, Arun Innanje
- Abstract summary: Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model.
Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution.
We develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation.
- Score: 22.151404603413752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a machine learning paradigm where local nodes
collaboratively train a central model while the training data remains
decentralized. Existing FL methods typically share model parameters or employ
co-distillation to address the issue of unbalanced data distribution. However,
they suffer from communication bottlenecks. More importantly, they risk privacy
leakage. In this work, we develop a privacy preserving and communication
efficient method in a FL framework with one-shot offline knowledge distillation
using unlabeled, cross-domain public data. We propose a quantized and noisy
ensemble of local predictions from completely trained local models for stronger
privacy guarantees without sacrificing accuracy. Based on extensive experiments
on image classification and text classification tasks, we show that our
privacy-preserving method outperforms baseline FL algorithms with superior
performance in both accuracy and communication efficiency.
Related papers
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
We propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques.
Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments.
Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy.
arXiv Detail & Related papers (2024-11-07T13:25:52Z) - Federated Learning via Input-Output Collaborative Distillation [40.38454921071808]
Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data.
We propose a data-free FL framework based on local-to-central collaborative distillation with direct input and output space exploitation.
arXiv Detail & Related papers (2023-12-22T07:05:13Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized.
We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation.
Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage.
arXiv Detail & Related papers (2022-10-16T06:44:46Z) - One-shot Federated Learning without Server-side Training [42.59845771101823]
One-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server.
Most of the existing one-shot FL methods are based on Knowledge Distillation; however, distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.
In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training.
arXiv Detail & Related papers (2022-04-26T01:45:37Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedOCR: Communication-Efficient Federated Learning for Scene Text
Recognition [76.26472513160425]
We study how to make use of decentralized datasets for training a robust scene text recognizer.
To make FedOCR fairly suitable to be deployed on end devices, we make two improvements including using lightweight models and hashing techniques.
arXiv Detail & Related papers (2020-07-22T14:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.