論文の概要: A Study on the Evaluation of Generative Models
- arxiv url: http://arxiv.org/abs/2206.10935v1
- Date: Wed, 22 Jun 2022 09:27:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 00:37:01.973837
- Title: A Study on the Evaluation of Generative Models
- Title(参考訳): 生成モデルの評価に関する研究
- Authors: Eyal Betzalel, Coby Penso, Aviv Navon, Ethan Fetaya
- Abstract要約: 潜在的生成モデルは、確率値を返さないが、近年は普及している。
本研究では,高品質な合成データセットの生成による生成モデルの評価指標について検討する。
FIDとISはいくつかのf-divergensと相関するが、クローズドモデルのランクは様々である。
- 参考スコア(独自算出の注目度): 19.18642459565609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Implicit generative models, which do not return likelihood values, such as
generative adversarial networks and diffusion models, have become prevalent in
recent years. While it is true that these models have shown remarkable results,
evaluating their performance is challenging. This issue is of vital importance
to push research forward and identify meaningful gains from random noise.
Currently, heuristic metrics such as the Inception score (IS) and Frechet
Inception Distance (FID) are the most common evaluation metrics, but what they
measure is not entirely clear. Additionally, there are questions regarding how
meaningful their score actually is. In this work, we study the evaluation
metrics of generative models by generating a high-quality synthetic dataset on
which we can estimate classical metrics for comparison. Our study shows that
while FID and IS do correlate to several f-divergences, their ranking of close
models can vary considerably making them problematic when used for fain-grained
comparison. We further used this experimental setting to study which evaluation
metric best correlates with our probabilistic metrics. Lastly, we look into the
base features used for metrics such as FID.
- Abstract(参考訳): 近年では、生成逆数ネットワークや拡散モデルなど、確率値を返さない帰納的生成モデルが普及している。
これらのモデルが顕著な結果を示していることは事実だが、パフォーマンスの評価は困難である。
この問題は研究を前進させ、ランダムノイズから有意義な成果を識別する上で極めて重要である。
現在、インセプションスコア(IS)やFrechet Inception Distance(FID)といったヒューリスティックな指標が最も一般的な評価指標であるが、その測定内容は明らかになっていない。
さらに、スコアがどの程度有意義かという疑問もある。
本研究では,古典的指標を推定できる高品質な合成データセットを作成し,生成モデルの評価指標について検討する。
FIDとISはいくつかのf-divergencesと相関するが、密閉モデルのランクは相違し、ファイングラデーション比較で問題となる可能性がある。
さらに, この実験セットを用いて, 評価基準と確率的指標の相関性について検討した。
最後に、FIDのようなメトリクスに使用される基本機能について調べる。
関連論文リスト
- Cobra Effect in Reference-Free Image Captioning Metrics [58.438648377314436]
視覚言語事前学習モデル(VLM)を活用した参照フリー手法の普及が出現している。
本稿では,基準自由度に欠陥があるかどうかを考察する。
GPT-4Vは生成した文を評価するための評価ツールであり,提案手法がSOTA(State-of-the-art)の性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-18T12:36:23Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - What is the Best Automated Metric for Text to Motion Generation? [19.71712698183703]
自然言語の記述から骨格に基づく人間の動きを生成することへの関心が高まっている。
人間の評価は、このタスクの究極の精度測定であり、自動化されたメトリクスは、人間の品質判断とよく相関するべきである。
本稿では,どの指標が人間の評価に最も適しているかを体系的に検討し,さらに適合する新しい指標を提案する。
論文 参考訳(メタデータ) (2023-09-19T01:59:54Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Exposing flaws of generative model evaluation metrics and their unfair
treatment of diffusion models [14.330863905963442]
生成モデルの全体的な性能、忠実度、多様性、希少性、記憶度を評価するための17の現代的な指標を比較した。
ヒトが判断する拡散モデルの最先端の知覚現実性は、FIDのような一般的に報告されている指標には反映されない。
次に、データ記憶の研究を行い、生成モデルは、CIFAR10のような単純で小さなデータセットでトレーニング例を記憶するが、ImageNetのようなより複雑なデータセットでは必ずしも記憶しない。
論文 参考訳(メタデータ) (2023-06-07T18:00:00Z) - Think Twice: Measuring the Efficiency of Eliminating Prediction
Shortcuts of Question Answering Models [3.9052860539161918]
そこで本研究では,任意の特徴量に対するモデルのスケール依存度を簡易に測定する手法を提案する。
質問回答(QA: Question Answering)における各種事前学習モデルとデバイアス法について、既知の予測バイアスと新たに発見された予測バイアスの集合に対するロバスト性を評価する。
既存のデバイアス法は、選択された刺激的特徴への依存を軽減することができるが、これらの手法のOOD性能向上は、偏りのある特徴への依存を緩和することによって説明できない。
論文 参考訳(メタデータ) (2023-05-11T14:35:00Z) - Feature Likelihood Divergence: Evaluating the Generalization of
Generative Models Using Samples [25.657798631897908]
Feature Likelihood Divergenceは、生成モデルの包括的なトリコトミック評価を提供する。
我々は,以前に提案された指標が失敗した場合でも,FLDが過度に適合する問題を識別できることを実証的に示す。
論文 参考訳(メタデータ) (2023-02-09T04:57:27Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
モデルベース最適化(MBO)では、マシンラーニングを使用して、(基底真理)オラクルと呼ばれるブラックボックス関数に対する報酬の尺度を最大化する候補を設計することに興味があります。
モデル検証中に基底オラクルに対する近似をトレーニングし、その代わりに使用することができるが、その評価は近似的であり、敵の例に対して脆弱である。
本手法は,外挿量を測定するために提案した評価フレームワークにカプセル化されている。
論文 参考訳(メタデータ) (2022-11-19T16:57:37Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Evaluation Metrics for Conditional Image Generation [100.69766435176557]
クラス条件画像生成設定において生成モデルを評価するための2つの新しい指標を提案する。
理論的分析は、提案されたメトリクスの背景にあるモチベーションを示し、新しいメトリクスと条件のないメトリクスを結びつける。
我々は,実験的な評価を行い,その指標を条件のない変種や他の指標と比較し,既存の生成モデルの解析に利用した。
論文 参考訳(メタデータ) (2020-04-26T12:15:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。